Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
JTO Clin Res Rep ; 4(9): 100504, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674811

RESUMO

Introduction: Lung cancer is the deadliest cancer in the United States and worldwide, and lung adenocarcinoma (LUAD) is the most prevalent histologic subtype in the United States. LUAD exhibits a wide range of aggressiveness and risk of recurrence, but the biological underpinnings of this behavior are poorly understood. Past studies have focused on the biological characteristics of the tumor itself, but the ability of the immune response to contain tumor growth represents an alternative or complementary hypothesis. Emerging technologies enable us to investigate the spatial distribution of specific cell types within the tumor nest and characterize this immune response. This study aimed to investigate the association between immune cell density within the primary tumor and recurrence-free survival (RFS) in stage I and II LUAD. Methods: This study is a prospective collection with retrospective evaluation. A total of 100 patients with surgically resected LUAD and at least 5-year follow-ups, including 69 stage I and 31 stages II tumors, were enrolled. Multiplexed immunohistochemistry panels for immune markers were used for measurement. Results: Cox regression models adjusted for sex and EGFR mutation status revealed that the risk of recurrence was reduced by 50% for the unit of one interquartile range (IQR) change in the tumoral T-cell (adjusted hazard ratio per IQR increase = 0.50, 95% confidence interval: 0.27-0.93) and decreased by 64% in mast cell density (adjusted hazard ratio per IQR increase = 0.36, confidence interval: 0.15-0.84). The analyses were reported without the type I error correction for the multiple types of immune cell testing. Conclusions: Analysis of the density of immune cells within the tumor and surrounding stroma reveals an association between the density of T-cells and RFS and between mast cells and RFS in early-stage LUAD. This preliminary result is a limited study with a small sample size and a lack of an independent validation set.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36303578

RESUMO

Certain body composition phenotypes, like sarcopenia, are well established as predictive markers for post-surgery complications and overall survival of lung cancer patients. However, their association with incidental lung cancer risk in the screening population is still unclear. We study the feasibility of body composition analysis using chest low dose computed tomography (LDCT). A two-stage fully automatic pipeline is developed to assess the cross-sectional area of body composition components including subcutaneous adipose tissue (SAT), muscle, visceral adipose tissue (VAT), and bone on T5, T8 and T10 vertebral levels. The pipeline is developed using 61 cases of the VerSe'20 dataset, 40 annotated cases of NLST, and 851 inhouse screening cases. On a test cohort consisting of 30 cases from the inhouse screening cohort (age 55 - 73, 50% female) and 42 cases of NLST (age 55 - 75, 59.5% female), the pipeline achieves a root mean square error (RMSE) of 7.25 mm (95% CI: [6.61, 7.85]) for the vertebral level identification and mean Dice similarity score (DSC) 0.99 ± 0.02, 0.96 ± 0.03, and 0.95 ± 0.04 for SAT, muscle, and VAT, respectively for body composition segmentation. The pipeline is generalized to the CT arm of the NLST dataset (25,205 subjects, 40.8% female, 1,056 lung cancer incidences). Time-to-event analysis for lung cancer incidence indicates inverse association between measured muscle cross-sectional area and incidental lung cancer risks (p < 0.001 female, p < 0.001 male). In conclusion, automatic body composition analysis using routine lung screening LDCT is feasible.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34650321

RESUMO

Clinical data elements (CDEs) (e.g., age, smoking history), blood markers and chest computed tomography (CT) structural features have been regarded as effective means for assessing lung cancer risk. These independent variables can provide complementary information and we hypothesize that combining them will improve the prediction accuracy. In practice, not all patients have all these variables available. In this paper, we propose a new network design, termed as multi-path multi-modal missing network (M3Net), to integrate the multi-modal data (i.e., CDEs, biomarker and CT image) considering missing modality with multiple paths neural network. Each path learns discriminative features of one modality, and different modalities are fused in a second stage for an integrated prediction. The network can be trained end-to-end with both medical image features and CDEs/biomarkers, or make a prediction with single modality. We evaluate M3Net with datasets including three sites from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL) project. Our method is cross validated within a cohort of 1291 subjects (383 subjects with complete CDEs/biomarkers and CT images), and externally validated with a cohort of 99 subjects (99 with complete CDEs/biomarkers and CT images). Both cross-validation and external-validation results show that combining multiple modality significantly improves the predicting performance of single modality. The results suggest that integrating subjects with missing either CDEs/biomarker or CT imaging features can contribute to the discriminatory power of our model (p < 0.05, bootstrap two-tailed test). In summary, the proposed M3Net framework provides an effective way to integrate image and non-image data in the context of missing information.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34531633

RESUMO

A major goal of lung cancer screening is to identify individuals with particular phenotypes that are associated with high risk of cancer. Identifying relevant phenotypes is complicated by the variation in body position and body composition. In the brain, standardized coordinate systems (e.g., atlases) have enabled separate consideration of local features from gross/global structure. To date, no analogous standard atlas has been presented to enable spatial mapping and harmonization in chest computational tomography (CT). In this paper, we propose a thoracic atlas built upon a large low dose CT (LDCT) database of lung cancer screening program. The study cohort includes 466 male and 387 female subjects with no screening detected malignancy (age 46-79 years, mean 64.9 years). To provide spatial mapping, we optimize a multi-stage inter-subject non-rigid registration pipeline for the entire thoracic space. Briefly, with 50 scans of 50 randomly selected female subjects as fine tuning dataset, we search for the optimal configuration of the non-rigid registration module in a range of adjustable parameters including: registration searching radius, degree of keypoint dispersion, regularization coefficient and similarity patch size, to minimize the registration failure rate approximated by the number of samples with low Dice similarity score (DSC) for lung and body segmentation. We evaluate the optimized pipeline on a separate cohort (100 scans of 50 female and 50 male subjects) relative to two baselines with alternative non-rigid registration module: the same software with default parameters and an alternative software. We achieve a significant improvement in terms of registration success rate based on manual QA. For the entire study cohort, the optimized pipeline achieves a registration success rate of 91.7%. The application validity of the developed atlas is evaluated in terms of discriminative capability for different anatomic phenotypes, including body mass index (BMI), chronic obstructive pulmonary disease (COPD), and coronary artery calcification (CAC).

6.
Neurocomputing (Amst) ; 397: 48-59, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32863584

RESUMO

With the rapid development of image acquisition and storage, multiple images per class are commonly available for computer vision tasks (e.g., face recognition, object detection, medical imaging, etc.). Recently, the recurrent neural network (RNN) has been widely integrated with convolutional neural networks (CNN) to perform image classification on ordered (sequential) data. In this paper, by permutating multiple images as multiple dummy orders, we generalize the ordered "RNN+CNN" design (longitudinal) to a novel unordered fashion, called Multi-path x-D Recurrent Neural Network (MxDRNN) for image classification. To the best of our knowledge, few (if any) existing studies have deployed the RNN framework to unordered intra-class images to leverage classification performance. Specifically, multiple learning paths are introduced in the MxDRNN to extract discriminative features by permutating input dummy orders. Eight datasets from five different fields (MNIST, 3D-MNIST, CIFAR, VGGFace2, and lung screening computed tomography) are included to evaluate the performance of our method. The proposed MxDRNN improves the baseline performance by a large margin across the different application fields (e.g., accuracy from 46.40% to 76.54% in VGGFace2 test pose set, AUC from 0.7418 to 0.8162 in NLST lung dataset). Additionally, empirical experiments show the MxDRNN is more robust to category-irrelevant attributes (e.g., expression, pose in face images), which may introduce difficulties for image classification and algorithm generalizability. The code is publicly available.

7.
Med Image Anal ; 65: 101785, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745977

RESUMO

The Long Short-Term Memory (LSTM) network is widely used in modeling sequential observations in fields ranging from natural language processing to medical imaging. The LSTM has shown promise for interpreting computed tomography (CT) in lung screening protocols. Yet, traditional image-based LSTM models ignore interval differences, while recently proposed interval-modeled LSTM variants are limited in their ability to interpret temporal proximity. Meanwhile, clinical imaging acquisition may be irregularly sampled, and such sampling patterns may be commingled with clinical usages. In this paper, we propose the Distanced LSTM (DLSTM) by introducing time-distanced (i.e., time distance to the last scan) gates with a temporal emphasis model (TEM) targeting at lung cancer diagnosis (i.e., evaluating the malignancy of pulmonary nodules). Briefly, (1) the time distance of every scan to the last scan is modeled explicitly, (2) time-distanced input and forget gates in DLSTM are introduced across regular and irregular sampling sequences, and (3) the newer scan in serial data is emphasized by the TEM. The DLSTM algorithm is evaluated with both simulated data and real CT images (from 1794 National Lung Screening Trial (NLST) patients with longitudinal scans and 1420 clinical studied patients). Experimental results on simulated data indicate the DLSTM can capture families of temporal relationships that cannot be detected with traditional LSTM. Cross-validation on empirical CT datasets demonstrates that DLSTM achieves leading performance on both regularly and irregularly sampled data (e.g., improving LSTM from 0.6785 to 0.7085 on F1 score in NLST). In external-validation on irregularly acquired data, the benchmarks achieved 0.8350 (CNN feature) and 0.8380 (with LSTM) on AUC score, while the proposed DLSTM achieves 0.8905. In conclusion, the DLSTM approach is shown to be compatible with families of linear, quadratic, exponential, and log-exponential temporal models. The DLSTM can be readily extended with other temporal dependence interactions while hardly increasing overall model complexity.


Assuntos
Memória de Curto Prazo , Redes Neurais de Computação , Algoritmos , Humanos , Processamento de Linguagem Natural , Tomografia Computadorizada por Raios X
8.
Artigo em Inglês | MEDLINE | ID: mdl-34040274

RESUMO

Deep learning has achieved many successes in medical imaging, including lung nodule segmentation and lung cancer prediction on computed tomography (CT). Recently, multi-task networks have shown to both offer additional estimation capabilities, and, perhaps more importantly, increased performance over single-task networks on a "main/primary" task. However, balancing the optimization criteria of multi-task networks across different tasks is an area of active exploration. Here, we extend a previously proposed 3D attention-based network with four additional multi-task subnetworks for the detection of lung cancer and four auxiliary tasks (diagnosis of asthma, chronic bronchitis, chronic obstructive pulmonary disease, and emphysema). We introduce and evaluate a learning policy, Periodic Focusing Learning Policy (PFLP), that alternates the dominance of tasks throughout the training. To improve performance on the primary task, we propose an Internal-Transfer Weighting (ITW) strategy to suppress the loss functions on auxiliary tasks for the final stages of training. To evaluate this approach, we examined 3386 patients (single scan per patient) from the National Lung Screening Trial (NLST) and de-identified data from the Vanderbilt Lung Screening Program, with a 2517/277/592 (scans) split for training, validation, and testing. Baseline networks include a single-task strategy and a multi-task strategy without adaptive weights (PFLP/ITW), while primary experiments are multi-task trials with either PFLP or ITW or both. On the test set for lung cancer prediction, the baseline single-task network achieved prediction AUC of 0.8080 and multi-task baseline failed to converge (AUC 0.6720). However, applying PFLP helped multi-task network clarify and achieved test set lung cancer prediction AUC of 0.8402. Furthermore, our ITW technique boosted the PFLP enabled multi-task network and achieved an AUC of 0.8462 (McNemar test, p < 0.01). In conclusion, adaptive consideration of multi-task learning weights is important, and PFLP and ITW are promising strategies.

9.
Clin Nucl Med ; 44(11): 851-854, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31524686

RESUMO

PURPOSE: To measure the SUVs in the tail of the pancreas compared with normal liver parenchyma and somatostatin receptor-positive lesions. MATERIALS AND METHODS: Ga-DOTATATE PET/low mAs CT of 35 patients were reviewed. RESULTS: There was no significant difference (P = 0.59) between the SUVaverage of normal liver and the SUVpeak of normal tail. Five patients had uptake in the tail slightly above that of normal liver that were interpreted equivocally. In one of these patients with Ga-DOTATATE uptake in a peripancreatic lymph node, proven neuroendocrine tumor underwent a distal pancreatectomy and pathologic examination revealed islet cell hyperplasia. CONCLUSIONS: Ga-DOTATATE uptake in the tail of the pancreas above that of normal liver indicates a somatostatin receptor-avid lesion. Uptake in the tail of the pancreas equal to the liver can be normal. Patients with uptake equivalent to the liver should undergo further anatomical imaging before procedural intervention.


Assuntos
Compostos Organometálicos/metabolismo , Pâncreas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Transporte Biológico , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Pâncreas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de Somatostatina/metabolismo
10.
Mach Learn Med Imaging ; 11861: 310-318, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-34040283

RESUMO

The field of lung nodule detection and cancer prediction has been rapidly developing with the support of large public data archives. Previous studies have largely focused cross-sectional (single) CT data. Herein, we consider longitudinal data. The Long Short-Term Memory (LSTM) model addresses learning with regularly spaced time points (i.e., equal temporal intervals). However, clinical imaging follows patient needs with often heterogeneous, irregular acquisitions. To model both regular and irregular longitudinal samples, we generalize the LSTM model with the Distanced LSTM (DLSTM) for temporally varied acquisitions. The DLSTM includes a Temporal Emphasis Model (TEM) that enables learning across regularly and irregularly sampled intervals. Briefly, (1) the temporal intervals between longitudinal scans are modeled explicitly, (2) temporally adjustable forget and input gates are introduced for irregular temporal sampling; and (3) the latest longitudinal scan has an additional emphasis term. We evaluate the DLSTM framework in three datasets including simulated data, 1794 National Lung Screening Trial (NLST) scans, and 1420 clinically acquired data with heterogeneous and irregular temporal accession. The experiments on the first two datasets demonstrate that our method achieves competitive performance on both simulated and regularly sampled datasets (e.g. improve LSTM from 0.6785 to 0.7085 on F1 score in NLST). In external validation of clinically and irregularly acquired data, the benchmarks achieved 0.8350 (CNN feature) and 0.8380 (LSTM) on area under the ROC curve (AUC) score, while the proposed DLSTM achieves 0.8905.

11.
Cancer Epidemiol Biomarkers Prev ; 21(5): 786-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22374995

RESUMO

BACKGROUND: Current management of lung nodules is complicated by nontherapeutic resections and missed chances for cure. We hypothesized that a serum proteomic signature may add diagnostic information beyond that provided by combined clinical and radiographic data. METHODS: Cohort A included 265 and cohort B 114 patients. Using multivariable logistic regression analysis we calculated the area under the receiver operating characteristic curve (AUC) and quantified the added value of a previously described serum proteomic signature beyond clinical and radiographic risk factors for predicting lung cancer using the integration discrimination improvement (IDI) index. RESULTS: The average computed tomography (CT) measured nodule size in cohorts A and B was 37.83 versus 23.15 mm among patients with lung cancer and 15.82 versus 17.18 mm among those without, respectively. In cohort A, the AUC increased from 0.68 to 0.86 after adding chest CT imaging variables to the clinical results, but the proteomic signature did not provide meaningful added value. In contrast, in cohort B, the AUC improved from 0.46 with clinical data alone to 0.61 when combined with chest CT imaging data and to 0.69 after adding the proteomic signature (IDI of 20% P = 0.0003). In addition, in a subgroup of 100 nodules between 5 and 20 mm in diameter, the proteomic signature added value with an IDI of 15% (P ≤ 0.0001). CONCLUSIONS: The results show that this serum proteomic biomarker signature may add value to the clinical and chest CT evaluation of indeterminate lung nodules. IMPACT: This study suggests a possible role of a blood biomarker in the evaluation of indeterminate lung nodules.


Assuntos
Neoplasias Pulmonares/sangue , Proteínas de Neoplasias/sangue , Proteômica/métodos , Nódulo Pulmonar Solitário/sangue , Idoso , Biomarcadores Tumorais/sangue , Estudos de Coortes , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Nódulo Pulmonar Solitário/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...