Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 64(10): 100417, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37481037

RESUMO

Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36609567

RESUMO

The cryptochrome/photolyase (CRY/PL) family is essential for life under sunlight because photolyases repair UV-damaged DNA and cryptochromes are normally part of the circadian clock that controls the activity-sleep cycle within the 24-h day. In this study, we aim to understand how the lineage and habitat of an insect affects its CRY/PL composition. To this end, we searched the large number of annotated protein sequences of 340 insect species already available in databases for CRY/PLs. Using phylogenetic tree and motif analyses, we identified four frequent CRY/PLs in insects: the photolyases 6-4 PL and CPDII PL, as well as the mammalian-type cryptochrome (MCRY) and Drosophila-type cryptochrome (DCRY). Assignment of CRY/PLs to the corresponding insects confirmed that light-exposed insects tend to have more CRY/PLs than insects with little light exposure. Nevertheless, even insects with greatly reduced CRY/PLs still possess MCRY, which can be regarded as the major insect cryptochrome. Only flies of the genus Schizophora, which includes Drosophila melanogaster, lost MCRY. Moreover, we found that MCRY and CPDII PL as well as DCRY and 6-4 PL occur very frequently together, suggesting an interaction between the two pairs.


Assuntos
Desoxirribodipirimidina Fotoliase , Proteínas de Drosophila , Animais , Criptocromos/genética , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Drosophila melanogaster/metabolismo , Luz Solar , Filogenia , Drosophila/metabolismo , Ritmo Circadiano , Proteínas de Drosophila/genética , Mamíferos/metabolismo
3.
Genes (Basel) ; 13(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140781

RESUMO

The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.


Assuntos
Relógios Circadianos , Desoxirribodipirimidina Fotoliase , Animais , Relógios Circadianos/genética , Criptocromos/genética , Criptocromos/metabolismo , Dano ao DNA , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Humanos , Mamíferos , Filogenia
4.
J Biol Rhythms ; 37(2): 185-201, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301885

RESUMO

Circadian clocks help animals to be active at the optimal time of the day whereby for most species the daily light-dark cycle is the most important zeitgeber for their circadian clock. In this respect, long arctic summer days are particularly challenging as light is present almost 24 h per day, and continuous light makes the circadian clocks of many animals arrhythmic. This is especially true for the fruit fly, Drosophila melanogaster, which possesses a very light-sensitive clock. The blue-light photoreceptor Cryptochrome (CRY) and the clock protein Timeless (TIM) are the light-sensitive components of the circadian clock and are responsible for constant light-induced arrhythmicity even at very low light intensities. Nevertheless, D. melanogaster was able to spread from its tropical origin and invade northern latitudes. Here, we tested whether a natural polymorphism at the timeless (tim) locus, s-tim and ls-tim, helped adaptation to very long photoperiods. The recently evolved natural allele, ls-tim, encodes a longer, less light sensitive form of TIM (L-TIM) in addition to the shorter (S-TIM) form, the only form encoded by the ancient s-tim allele. ls-tim has evolved in southeastern Italy and slowly spreads to higher latitudes. L-TIM is known to interact less efficiently with CRY as compared with S-TIM. Here, we studied the locomotor activity patterns of ~40 wild s-tim and ls-tim isofemale lines caught at different latitudes under simulated high-latitude summer light conditions (continuous light or long photoperiods with 20-h daily light). We found that the ls-tim lines were significantly more rhythmic under continuous light than the s-tim lines. Importantly, the ls-tim lines can delay their evening activity under long photoperiods, a behavioral adaptation that appears to be optimal under high-latitude conditions. Our observations suggest that the functional gain associated with ls-tim may drive the northern spread of this allele by directional selection.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Alelos , Animais , Ritmo Circadiano/genética , Criptocromos , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Luz , Fotoperíodo
5.
Front Physiol ; 12: 705048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366893

RESUMO

Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.

6.
J Biol Rhythms ; 33(6): 602-613, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30203704

RESUMO

Recently, we reported differences in the expression pattern of the blue light-sensitive flavoprotein cryptochrome (CRY) and the neuropeptide pigment-dispersing factor (PDF) in the neuronal clock network of high-latitude Drosophila species, belonging to the Drosophila subgenus ( virilis-repleta radiation), compared with cosmopolitan D. melanogaster flies, belonging to the Sophophora subgenus. Alterations in rhythmic patterns of activity due to these differences might have adaptive significance for colonizing high-latitude habitats and, hence, adjusting to long photoperiods. Here, we show that these differing CRY/PDF expression patterns are only present in those species of the virilis-repleta radiation that colonized high latitudes. The cosmopolitan species D. mercatorum and D. hydei have a D. melanogaster-like clock network and behavior despite belonging to the virilis-repleta radiation. Similarly, 2 species of the holotropical Zaprionus genus, more closely related to the Drosophila subgenus than to the Sophophora subgenus, retain a D. melanogaster-like clock network and rhythmic behavior. We therefore suggest that the D. melanogaster-like clock network is the "ancestral fly clock phenotype" and that alterations in the CRY/PDF clock neurochemistry have allowed some species of the virilis-repleta radiation to colonize high-latitude environments.


Assuntos
Relógios Circadianos/fisiologia , Drosophila/genética , Drosophila/fisiologia , Animais , Encéfalo/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano , Criptocromos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Evolução Molecular , Geografia , Masculino , Neuropeptídeos/metabolismo , Fotoperíodo , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...