Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 66(24)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34875646

RESUMO

The vast majority of PET detectors in the field today are based on pixelated scintillators. Yet, the resolution of this type of detector is limited by the pixel size. To overcome this limitation, one can use monolithic detectors. However, this detector architecture demands specific and high-speed detector readout of the photodetector array. A commonly used approach is to integrate the current pulses generated by every pixel but such circuitry quickly becomes bulky, power consuming and expensive. The objective of this work is to investigate a novel readout and event positioning scheme for monolithic PET detectors, based on time-over-threshold (ToT). In this case, we measure the time that the pulse is above a certain threshold through a comparator. The pulse widths are used for event positioning using a mean nearest neighbour approach (mNNToT). For energy determination one integrating multiplexed channel is foreseen. We evaluate the positioning accuracy and uniformity of such a ToT detector by means of Monte Carlo simulations. The impact of the threshold value is investigated and the results are compared to a detector using mean nearest neighbour with pulse-integration (mNNint), which has already proven to allow sub-mm resolution. We show minimal degradation in spatial resolution and bias performance compared to mNNint. The highest threshold results in the worst resolution performance but degradation remains below 0.1 mm. Bias is largely constant over different thresholds for mNNToTand close to identical to mNNint. Furthermore we show that ToT performs well in terms of detector uniformity and that scattered photons can be positioned inside the crystal with high accuracy. We conclude from this work that ToT is a valuable alternative to pulse-integration for monolithic PET detectors. This novel approach has an impact on PET detector development since it has the advantage of lower power consumption, compactness and inherent amplitude-to-time conversion.


Assuntos
Fótons , Tomografia por Emissão de Pósitrons , Simulação por Computador , Método de Monte Carlo , Fenômenos Físicos , Tomografia por Emissão de Pósitrons/métodos
2.
Phys Med Biol ; 59(1): 153-71, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24334315

RESUMO

Single-photon emission computed tomography (SPECT) detectors with improved spatial resolution can be used to build multi-pinhole SPECT systems that have a higher sensitivity or a higher spatial resolution. In order to improve the spatial resolution we investigate the performance of a 2 mm thick continuous Lutetium Yttrium Orthosilicate (LYSO) scintillator and compare it to the performance of a 5 mm thick continuous NaI(Tl) scintillator. The advantages of LYSO are its high stopping power and its non-hygroscopicity. Drawbacks are the lower light output and the intrinsic radioactivity. The hypothesis of this study is that such a thin LYSO scintillator will have a small light spread and, as a consequence, will also have an improved spatial resolution when coupled to a Hamamatsu H8500 position sensitive photomultiplier tube. To optimize the spatial resolution and the useful detector area we used a mean nearest neighbor event-positioning method. Beam source measurements ((99m)Tc, 140 keV) were done to investigate the energy resolution and the spatial resolution of both detectors. The effect of the intrinsic radioactivity of the LYSO scintillator in the energy window was quantified. The mean energy resolution is 9.3% for the NaI(Tl) scintillator and 21.3% for the LYSO scintillator. The LYSO spectrum shows an X-ray escape peak which decreases the detection efficiency with 9.1%. The spatial resolution of the LYSO detector (0.93 mm full width at half maximum (FWHM)) is superior to the spatial resolution of the NaI(Tl) detector (1.37 mm FWHM). The intrinsic radioactivity in the energy window (42% window centered at 140 keV) is low (125.6 cps, 0.024 cps mm(-3)). LYSO is a promising scintillator for small-animal SPECT imaging, where spatial resolution is more important than energy resolution.


Assuntos
Lutécio , Contagem de Cintilação/instrumentação , Silicatos , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Ítrio , Calibragem , Tungstênio
3.
Med Phys ; 40(11): 112501, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24320460

RESUMO

PURPOSE: Over the last ten years, there has been an extensive growth in the development of microSPECT imagers. Most of the systems are based on the combination of conventional, relatively large gamma cameras with poor intrinsic spatial resolution and multipinhole collimators working in large magnification mode. Spatial resolutions range from 0.58 to 0.76 mm while peak sensitivities vary from 0.06% to 0.4%. While pushing the limits of performance is of major importance, the authors believe that there is a need for smaller and less complex systems that bring along a reduced cost. While low footprint and low-cost systems can make microSPECT available to more researchers, the ease of operation and calibration and low maintenance cost are additional factors that can facilitate the use of microSPECT in molecular imaging. In this paper, the authors simulate the performance of a microSPECT imager that combines high space-bandwidth detectors and pinholes with truncated projection, resulting in a small and stationary system. METHODS: A system optimization algorithm is used to determine the optimal SPECT systems, given our high resolutions detectors and a fixed field-of-view. These optimal system geometries are then used to simulate a Defrise disk phantom and a hot rod phantom. Finally, a MOBY mouse phantom, with realistic concentrations of Tc99m-tetrofosmin is simulated. RESULTS: Results show that the authors can successfully reconstruct a Defrise disk phantom of 24 mm in diameter without any rotating system components or translation of the object. Reconstructed spatial resolution is approximately 800 µm while the peak sensitivity is 0.23%. Finally, the simulation of the MOBY mouse phantom shows that the authors can accurately reconstruct mouse images. CONCLUSIONS: These results show that pinholes with truncated projections can be used in small magnification or minification mode to obtain a compact and stationary microSPECT system. The authors showed that they can reach state-of-the-art system performance and can successfully reconstruct images with realistic noise levels in a preclinical context. Such a system can be useful for dynamic SPECT imaging.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Algoritmos , Animais , Encéfalo/patologia , Calibragem , Simulação por Computador , Desenho de Equipamento , Câmaras gama , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Compostos Organofosforados/química , Compostos de Organotecnécio/química , Imagens de Fantasmas , Compostos Radiofarmacêuticos/química , Ratos , Reprodutibilidade dos Testes
4.
Phys Med Biol ; 58(18): 6317-36, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966017

RESUMO

Currently, clinical brain single photon emission computed tomography (SPECT) is mostly performed using rotating dual-head gamma cameras equipped with low-energy-high-resolution parallel-beam collimators (LEHR PAR). The resolution of these systems is rather poor (8-10 mm) and the rotation of the heavy gamma cameras can introduce misalignment errors. Therefore, we designed a static full-ring multi-lofthole brain SPECT insert for an existing ring of LaBr3 (5% Ce) detectors. The novelty of the design is found in the shutter mechanism that makes the system very flexible and eliminates the need for rotating parts. A stationary SPECT insert is not only more robust, it is also easier to integrate in a magnetic resonance imaging system (MRI) for simultaneous SPECT-MRI. The target spatial resolution of our design is 6 mm. In this study we used analytical calculations to optimize the collimator for an existing ring of LaBr3 (5% Ce) detectors. We fixed the target spatial resolution at 6 mm in the center of the field-of-view and maximized the volume sensitivity by changing the collimator radius, the aperture and the number of loftholes. Based on these optimal parameters we simulated phantom data and evaluated the image quality of our multi-lofthole system. We simulated a noiseless uniform and Defrise phantom to assess artifacts and sampling completeness and a noiseless hot-rod phantom to assess the reconstructed spatial resolution. We visually evaluated a simulated noisy Hoffman phantom with two lesions. Then, we evaluated the non-prewhitening matched filter signal-to-noise ratio (NPW-SNR) in two lesion detectability phantoms: one with hot lesions and one with cold lesions. Finally, a contrast-to-noise (CNR) study was performed on a phantom with both hot and cold lesions of different sizes (6-16 mm). All results were compared to a LEHR PAR system. The optimization resulted in a final collimator design with a volume sensitivity of 1.55 × 10(-4) cps Bq(-1), which is 2.5 times lower than the sensitivity of a dual-head system with LEHR PAR collimators. Spatial resolution, on the other hand, has clearly improved compared to LEHR PAR: with the multi-lofthole system we successfully reconstructed 4 mm hot rods. Although this improved resolution did not result in an unambiguous improvement in CNR or NPW-SNR, we believe that the flexibility of the shutter mechanism opens interesting perspectives toward time-multiplexing and integration with MRI.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Phys Med Biol ; 58(14): 4807-25, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23787300

RESUMO

Monolithic scintillation detectors for positron emission tomography and single-photon emission computed tomography (SPECT) imaging have many advantages over pixelated detectors. The use of monolithic crystals allows for reducing the scintillator cost per unit volume and increasing the sensitivity along with the energy and timing resolution of the detector. In addition, on thick detectors the depth-of-interaction can be determined without additional hardware. However, costly and complex calibration procedures have been proposed to achieve optimal detector performance for monolithic detectors. This hampers their use in commercial systems. There is thus, a need for simple calibration routines that can be performed on assembled systems. The main goal of this work is to develop a simplified calibration procedure based on acquired training data. In comparison with other methods that use training data acquired with beam sources attached to robotic stages, the proposed method uses a static un-collimated activity source with simple geometry acquiring in a reasonable time. Once the data are acquired, the calibration of the detector is accomplished in three steps: energy calibration based on the k-means clustering method, self-organization based on the self-organizing maps algorithm, and distortion correction based on the Monge-Kantorovich grid adaptation. The proposed calibration method was validated for 2D positioning using a SPECT detector. Similar results were obtained by comparison with an existing calibration method (maximum likelihood estimation). In conclusion, we proposed a novel calibration method for monolithic scintillation detectors that greatly simplifies their use with optimal performance in SPECT systems.


Assuntos
Contagem de Cintilação/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Calibragem , Reprodutibilidade dos Testes , Fatores de Tempo
6.
Med Phys ; 40(1): 012501, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23298112

RESUMO

PURPOSE: The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. METHODS: A complex collimator with 20 loftholes with 500 µm diameter pinhole opening was designed and produced (16 mm thick and 70 × 52 mm(2) transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 µm thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. RESULTS: The density of the collimator was equal to 17.31 ± 0.10 g∕cm(3) (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 µm. The aperture positions have a mean deviation of 5 µm, the maximum deviation was 174 µm and the minimum deviation was -122 µm. The mean aperture diameter is 464 ± 19 µm. The calculated and measured sensitivity and resolution of point sources at different positions in the field-of-view agree well. The measured and expected attenuation of the three sample pieces are in a good agreement. There was no influence of the 7T magnetic field on the collimator (which is paramagnetic) and minimal distortion was noticed on the MR scan of the uniform phantom. CONCLUSIONS: Additive manufacturing is a very promising technique for the production of complex multipinhole collimators and may also be used for producing other complex collimators. The cost of this technique is only related to the amount of powder needed and the time it takes to have the collimator built. The timeframe from design to collimator production is significantly reduced.


Assuntos
Lasers , Imageamento por Ressonância Magnética/instrumentação , Transição de Fase , Tungstênio/química , Animais , Encéfalo , Pós , Ratos , Fatores de Tempo
7.
Phys Med Biol ; 58(4): 859-85, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23337658

RESUMO

In single-photon emission computed tomography (SPECT), multi-pinhole collimation is often employed nowadays. Most multi-pinhole collimators avoid overlap (multiplexing) of the projections on the detector. This can be done by using additional shielding or by spacing the pinholes far enough apart. Using additional shielding has the drawback that it increases weight, design complexity and cost. Spacing the pinholes far enough apart results in sub-optimal detector usage, the valuable detector area is not entirely used. This is due to the circular projections of pinholes on the detector; these ellipses can not be tiled with high detector coverage. To overcome this we designed a new pinhole geometry, the lofthole, that has a rectangular projection on the detector. The lofthole has a circular aperture and a rectangular entrance/exit opening. Sensitivity formulae have been derived for pinholes and loftholes. These formulae take the penumbra effect into account; the proposed formulae do not take penetration into account. The derived formulae are valid for geometries where the field-of-view and the sensitivity of the aperture are solely limited by the exit window. A flood map measurement was performed to compare the rectangular projection of a lofthole with the circular projection of a pinhole. Finally, measurements were done to compare the amount of penetration of pinholes with the amount of penetration of a lofthole. A square lofthole collimator has less penetration than a knife-edge pinhole collimator that irradiates the same rectangular detector area with full coverage. A multi-lofthole collimator allows high detector coverage without using additional shielding. An additional advantage is the lower amount of penetration.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Animais , Simulação por Computador , Desenho de Equipamento , Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...