Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(21): 33930-33944, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859162

RESUMO

Spatial-mode demultiplexing (SPADE) has recently been adopted to measure the separation in the transverse plane between two incoherent point-like sources with sub-wavelength separation. It has been argued that this approach may yield extraordinary performances in the photon-counting regime. Here, we explore SPADE as a tool for precision measurements in the regime of bright, incoherent sources. First we analyze the general problem of estimating the second moments of the source's intensity distribution, for an extended incoherent source of any shape. Our theory predicts a substantial improvement in signal-to-noise ratio (SNR) of SPADE over direct imaging in the sub-wavelength regime. Second, we present an experimental application of SPADE to the case of two point-like, bright sources. We demonstrate the use of this setup for the estimation of the transverse separation and for the estimation of the relative intensity, confirming the expected improvement in SNR.

2.
Sci Rep ; 13(1): 8201, 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37211561

RESUMO

Nonlocality, probably the principal friction between Quantum Physics and Relativity, disturbed the physicists even more than realism since it looks to originate superluminal signalling, the Einsteinian "Spooky action at a distance". From 2000 on, several tests to set lower bounds of the Spooky action at a distance velocity ([Formula: see text]) have been performed. They are usually based on a Bell Test performed in km long and carefully balanced experimental setups to fix a more and more improved bound making some assumptions dictated by the experimental conditions. By exploiting advances in quantum technologies, we performed a Bell's test with an improved bound in a tabletop experiment of the order of few minutes, thus being able to control parameters otherwise uncontrollable in an extended setup or in long lasting experiments.

3.
Phys Rev Lett ; 121(23): 230501, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576212

RESUMO

New techniques based on weak measurements have recently been introduced to the field of quantum state reconstruction. Some of them allow the direct measurement of each matrix element of an unknown density operator and need only O(d) different operations, compared to d^{2} linearly independent projectors in the case of standard quantum state tomography, for the reconstruction of an arbitrary mixed state. However, due to the weakness of these couplings, these protocols are approximated and prone to large statistical errors. We propose a method which is similar to the weak measurement protocols but works regardless of the coupling strength: our protocol is not approximated and thus improves the accuracy and precision of the results with respect to weak measurement schemes. We experimentally apply it to the polarization state of single photons and compare the results to those of preexisting methods for different values of the coupling strength. Our results show that our method outperforms previous proposals in terms of accuracy and statistical errors.

4.
J Phys Chem A ; 122(28): 6026-6030, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29944834

RESUMO

We propose a new independent thermometry method, line strength ratio thermometry (LRT), based on optical spectroscopy measurement of the line strength intensity ratio R between pairs of molecular transitions. Due to strong dependence of R on kT, a given measurement uncertainty δR for R reflects in a small uncertainty of kT determination. By assuming experimental uncertainties of R and T to be those reported in literature, we foresee a k determination at the 5 ppm level, which is better than the most precise k determination by using Doppler broadening thermometry (DBT). In the frame of a new definition of the SI Kelvin unit, based on k as fixed constant, once the k constant is exactly established, LRT is proposed as a high resolution noncontact thermometry technique for absolute temperature measurements of gas samples at the ppm level.

5.
Philos Trans A Math Phys Eng Sci ; 376(2123)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29807904

RESUMO

Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'.

6.
Sci Adv ; 3(10): e1701180, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29075668

RESUMO

Gedankenexperiments have consistently played a major role in the development of quantum theory. A paradigmatic example is Wheeler's delayed-choice experiment, a wave-particle duality test that cannot be fully understood using only classical concepts. We implement Wheeler's idea along a satellite-ground interferometer that extends for thousands of kilometers in space. We exploit temporal and polarization degrees of freedom of photons reflected by a fast-moving satellite equipped with retroreflecting mirrors. We observe the complementary wave- or particle-like behaviors at the ground station by choosing the measurement apparatus while the photons are propagating from the satellite to the ground. Our results confirm quantum mechanical predictions, demonstrating the need of the dual wave-particle interpretation at this unprecedented scale. Our work paves the way for novel applications of quantum mechanics in space links involving multiple photon degrees of freedom.

7.
Eur Heart J Cardiovasc Imaging ; 18(7): 802-808, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025262

RESUMO

AIMS: To explore the feasibility of using transthoracic 3D echocardiography (3DTTE) data to generate 3D patient-specific models of tricuspid valve (TV). METHODS AND RESULTS: Multi-beat 3D data sets of the TV (32 vol/s) were acquired in five subjects with various TV morphologies from the apical approach and analysed offline with custom-made software. Coordinates representing the annulus and the leaflets were imported into MeshLab (Visual Computing Lab ISTICNR) to develop solid models to be converted to stereolithographic file format and 3D print. Measurements of the TV annulus antero-posterior (AP) and medio-lateral (ML) diameters, perimeter (P), and TV tenting height (H) and volume (V) obtained from the 3D echo data set were compared with those performed on the 3D models using a caliper, a syringe and a millimeter tape. Antero-posterior (4.2 ± 0.2 cm vs. 4.2 ± 0 cm), ML (3.7 ± 0.2 cm vs. 3.6 ± 0.1 cm), P (12.6 ± 0.2 cm vs. 12.7 ± 0.1 cm), H (11.2 ± 2.1 mm vs. 10.8 ± 2.1 mm) and V (3.0 ± 0.6 ml vs. 2.8 ± 1.4 ml) were similar (P = NS for all) when measured on the 3D data set and the printed model. The two sets of measurements were highly correlated (r = 0.991). The mean absolute error (2D - 3D) for AP, ML, P and tenting H was 0.7 ± 0.3 mm, indicating accuracy of the 3D model of <1 mm. CONCLUSION: Three-dimensional printing of the TV from 3DTTE data is feasible with highly conserved fidelity. This technique has the potential for rapid integration into clinical practice to assist with decision-making, surgical planning, and teaching.


Assuntos
Ecocardiografia Tridimensional/métodos , Processamento de Imagem Assistida por Computador , Impressão Tridimensional , Insuficiência da Valva Tricúspide/diagnóstico por imagem , Valva Tricúspide/diagnóstico por imagem , Estudos de Casos e Controles , Bases de Dados Factuais , Feminino , Humanos , Masculino , Valores de Referência , Estudos Retrospectivos , Sensibilidade e Especificidade , Valva Tricúspide/fisiopatologia
8.
Phys Rev Lett ; 116(25): 253601, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391721

RESUMO

Quantum interference arising from the superposition of states is striking evidence of the validity of quantum mechanics, confirmed in many experiments and also exploited in applications. However, as for any scientific theory, quantum mechanics is valid within the limits in which it has been experimentally verified. In order to extend such limits, it is necessary to observe quantum interference in unexplored conditions such as moving terminals at large distances in space. Here, we experimentally demonstrate single photon interference at a ground station due to the coherent superposition of two temporal modes reflected by a rapidly moving satellite a thousand kilometers away. The relative speed of the satellite induces a varying modulation in the interference pattern. The measurement of the satellite distance in real time by laser ranging allows us to precisely predict the instantaneous value of the interference phase. We then observed the interference patterns with a visibility up to 67% with three different satellites and with a path length up to 5000 km. Our results attest to the viability of photon temporal modes for fundamental tests of physics and quantum communication in space.

9.
Phys Rev Lett ; 116(4): 040502, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871315

RESUMO

Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.

10.
Phys Rev Lett ; 115(4): 040502, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252672

RESUMO

Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse µ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...