Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod Update ; 29(2): 218-232, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571510

RESUMO

BACKGROUND: As in other domains of medicine, high-throughput sequencing methods have led to the identification of an ever-increasing number of gene variants in the fields of both male and female infertility. The increasing number of recently identified genes allows an accurate diagnosis for previously idiopathic cases of female infertility and more appropriate patient care. However, robust evidence of the gene-disease relationships (GDR) allowing the proper translation to clinical application is still missing in many cases. OBJECTIVE AND RATIONALE: An evidence-based curation of currently identified genes involved in female infertility and differences in sex development (DSD) would significantly improve both diagnostic performance and genetic research. We therefore performed a systematic review to summarize current knowledge and assess the available GDR. SEARCH METHODS: PRISMA guidelines were applied to curate all available information from PubMed and Web of Science on genetics of human female infertility and DSD leading to infertility, from 1 January 1988 to 1 November 2021. The reviewed pathologies include non-syndromic as well as syndromic female infertility, and endocrine and reproductive system disorders. The evidence that an identified phenotype is caused by pathogenic variants in a specific gene was assessed according to a standardized scoring system. A final score (no evidence, limited, moderate, strong, or definitive) was assigned to every GDR. OUTCOMES: A total of 45 271 publications were identified and screened for inclusion of which 1078 were selected for gene and variant extraction. We have identified 395 genes and validated 466 GDRs covering all reported monogenic causes of female infertility and DSD. Furthermore, we present a genetic diagnostic flowchart including 105 genes with at least moderate evidence for female infertility and suggest recommendations for future research. The study did not take into account associated genetic risk factor(s) or oligogenic/polygenic causes of female infertility. WIDER IMPLICATIONS: We have comprehensively reviewed the existing research on the genetics of female infertility and DSD, which will enable the development of diagnostic panels using validated genes. Whole genome analysis is shifting from predominantly research to clinical application, increasing its diagnostic potential. These new diagnostic possibilities will not only decrease the number of idiopathic cases but will also render genetic counselling more effective for infertile patients and their families.


Assuntos
Infertilidade Feminina , Humanos , Masculino , Feminino , Infertilidade Feminina/genética , Fenótipo , Aconselhamento Genético , Desenvolvimento Sexual
2.
Nature ; 606(7912): 197-203, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585235

RESUMO

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , DNA , Proteínas de Manutenção de Minicromossomo , Animais , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , Fase G1 , Células HCT116 , Humanos , Camundongos , Componente 3 do Complexo de Manutenção de Minicromossomo/química , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
3.
Curr Biol ; 31(18): 4038-4051.e7, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314679

RESUMO

The frequency of egg aneuploidy and trisomic pregnancies increases with maternal age. To what extent individual approaches can delay the "maternal age effect" is unclear because multiple causes contribute to chromosomal abnormalities in mammalian eggs. We propose that ovulation frequency determines the physiological aging of oocytes, a key aspect of which is the ability to accurately segregate chromosomes and produce euploid eggs. To test this hypothesis, ovulations were reduced using successive pregnancies, hormonal contraception, and a pre-pubertal knockout mouse model, and the effects on chromosome segregation and egg ploidy were examined. We show that each intervention reduces chromosomal abnormalities in eggs of aged mice, suggesting that ovulation reduction delays oocyte aging. The protective effect can be partly explained by retention of chromosomal Rec8-cohesin that maintains sister chromatid cohesion in meiosis. In addition, single-nucleus Hi-C (snHi-C) revealed deterioration in the 3D chromatin structure including an increase in extruded loop sizes in long-lived oocytes. Artificial cleavage of Rec8 is sufficient to increase extruded loop sizes, suggesting that cohesin complexes maintaining cohesion restrict loop extrusion. These findings suggest that ovulation suppression protects against Rec8 loss, thereby maintaining both sister chromatid cohesion and 3D chromatin structure and promoting production of euploid eggs. We conclude that the maternal age effect can be delayed in mice. An implication of this work is that long-term ovulation-suppressing conditions can potentially reduce the risk of aneuploid pregnancies at advanced maternal age.


Assuntos
Meiose , Inibição da Ovulação , Animais , Proteínas de Ciclo Celular/genética , Aberrações Cromossômicas , Segregação de Cromossomos , Feminino , Mamíferos , Idade Materna , Camundongos , Oócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...