Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Rep ; 14(1): 12879, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839896

RESUMO

Paneth cells (PCs), a subset of intestinal epithelial cells (IECs) found at the base of small intestinal crypts, play an essential role in maintaining intestinal homeostasis. Altered PCs function is associated with diverse intestinal pathologies, including ileal Crohn's disease (CD). CD patients with ileal involvement have been previously demonstrated to display impairment in PCs and decreased levels of anti-microbial peptides. Although the immunosuppressive drug Azathioprine (AZA) is widely used in CD therapy, the impact of AZA on IEC differentiation remains largely elusive. In the present study, we hypothesized that the orally administered drug AZA also exerts its effect through modulation of the intestinal epithelium and specifically via modulation of PC function. AZA-treated CD patients exhibited an ileal upregulation of AMPs on both mRNA and protein levels compared to non-AZA treated patients. Upon in vitro AZA stimulation, intestinal epithelial cell line MODE-K exhibited heightened expression levels of PC marker in concert with diminished cell proliferation but boosted mitochondrial OXPHOS activity. Moreover, differentiation of IECs, including PCs differentiation, was boosted in AZA-treated murine small intestinal organoids and was associated with decreased D-glucose consumption and decreased growth rates. Of note, AZA treatment strongly decreased Lgr5 mRNA expression as well as Ki67 positive cells. Further, AZA restored dysregulated PCs associated with mitochondrial dysfunction. AZA-dependent inhibition of IEC proliferation is accompanied by boosted mitochondria function and IEC differentiation into PC.


Assuntos
Azatioprina , Diferenciação Celular , Doença de Crohn , Mucosa Intestinal , Celulas de Paneth , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Azatioprina/farmacologia , Celulas de Paneth/metabolismo , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/patologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Animais , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Feminino , Masculino , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/patologia , Adulto , Organoides/efeitos dos fármacos , Organoides/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proliferação de Células/efeitos dos fármacos , Pessoa de Meia-Idade , Linhagem Celular , Índice de Gravidade de Doença
2.
Gut ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857989

RESUMO

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.

3.
Inflamm Bowel Dis ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156773

RESUMO

BACKGROUND: Accurate biomarkers for disease activity and progression in patients with inflammatory bowel disease (IBD) are a prerequisite for individual disease characterization and personalized therapy. We show that metabolic profiling of serum from IBD patients is a promising approach to establish biomarkers. The aim of this work was to characterize metabolomic and lipidomic serum profiles of IBD patients in order to identify metabolic fingerprints unique to the disease. METHODS: Serum samples were obtained from 55 patients with Crohn's disease (CD), 34 patients with ulcerative colitis (UC), and 40 healthy control (HC) individuals and analyzed using proton nuclear magnetic resonance spectroscopy. Classification of patients and HC individuals was achieved by orthogonal partial least squares discriminant analysis and univariate analysis approaches. Disease activity was assessed using the Gastrointestinal Symptom Rating Scale. RESULTS: Serum metabolome significantly differed between CD patients, UC patients, and HC individuals. The metabolomic differences of UC and CD patients compared with HC individuals were more pronounced than the differences between UC and CD patients. Differences in serum levels of pyruvic acid, histidine, and the branched-chain amino acids leucine and valine were detected. The size of low-density lipoprotein particles shifted from large to small dense particles in patients with CD. Of note, apolipoprotein A1 and A2 serum levels were decreased in CD and UC patients with higher fecal calprotectin levels. The Gastrointestinal Symptom Rating Scale is negatively associated with the concentration of apolipoprotein A2. CONCLUSIONS: Metabolomic assessment of serum samples facilitated the differentiation of IBD patients and HC individuals. These differences were constituted by changes in amino acid and lipoprotein levels. Furthermore, disease activity in IBD patients was associated with decreased levels of the atheroprotective apolipoproteins A1 and A2.


The metabolic and lipidomic serum profile of patients with inflammatory bowel disease was analyzed using proton nuclear magnetic resonance spectroscopy. A significantly altered profile in comparison with healthy control individuals was identified, characterized by more atherogenic properties.

4.
Front Pharmacol ; 13: 815353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431918

RESUMO

The angiotensin II (type 1) (AT1) receptor blocker telmisartan (TEL) is beneficial for the treatment of individuals suffering from metabolic syndrome. As we have shown that TEL has an impact on gut microbiota, we investigated here whether TEL influences gut barrier function. C57BL/6N mice were fed with chow or high-fat diet (HFD) and treated with vehicle or TEL (8 mg/kg/day). Mucus thickness was determined by immunohistochemistry. Periodic Acid-Schiff staining allowed the number of goblet cells to be counted. Using western blots, qPCR, and immunohistochemistry, factors related to mucus biosynthesis (Muc2, St6galnac), proliferation (Ki-67), or necroptosis (Rip3) were measured. The influence on cell viability was determined in vitro by using losartan, as the water solubility of TEL was too low for in vitro experiments. Upon HFD, mice developed obesity as well as leptin and insulin resistance, which were prevented by TEL. Mucus thickness upon HFD-feeding was diminished. Independent of feeding, TEL additionally reduced mucus thickness. Numbers of goblet cells were not affected by HFD-feeding and TEL. St6galnac expression was increased by TEL. Rip3 was increased in TEL-treated and HFD-fed mice, while Ki-67 decreased. Cell viability was diminished by using >1 mM losartan. The anti-obese effect of TEL was associated with a decrease in mucus thickness, which was likely not related to a lower expression of Muc2 and goblet cells. A decrease in Ki-67 and increase in Rip3 indicates lower cell proliferation and increased necroptosis upon TEL. However, direct cell toxic effects are ruled out, as in vivo concentrations are lower than 1 mM.

5.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830971

RESUMO

To enable rapid proliferation, colorectal tumor cells up-regulate epidermal growth factor receptor (EGFR) signaling and aerobic glycolysis, resulting in substantial lactate release into the tumor microenvironment and impaired anti-tumor immune responses. We hypothesized that a nutritional intervention designed to reduce aerobic glycolysis may boost the EGFR-directed antibody (Ab)-based therapy of pre-existing colitis-driven colorectal carcinoma (CRC). CRC development was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) administration to C57BL/6 mice. AOM/DSS-treated mice were fed a glucose-free, high-protein diet (GFHPD) or an isoenergetic control diet (CD) in the presence or absence of an i.p. injection of an anti-EGFR mIgG2a or respective controls. AOM/DSS-treated mice on a GFHPD displayed a reduced systemic glucose metabolism associated with reduced oxidative phosphorylation (OXPHOS) complex IV expression and diminished tumor loads. Comparable but not additive to an anti-EGFR-Ab therapy, the GFHPD was accompanied by enhanced tumoral goblet cell differentiation and decreased colonic PD-L1 and splenic CD3ε, as well as PD-1 immune checkpoint expression. In vitro, glucose-free, high-amino acid culture conditions reduced proliferation but improved goblet cell differentiation of murine and human CRC cell lines MC-38 and HT29-MTX in combination with down-regulation of PD-L1 expression. We here found GFHPD to systemically dampen glycolysis activity, thereby reducing CRC progression with a similar efficacy to EGFR-directed antibody therapy.

6.
Nat Commun ; 12(1): 1093, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597537

RESUMO

Interactions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.


Assuntos
Intestino Grosso/imunologia , Intestino Delgado/imunologia , Methylococcus capsulatus/imunologia , Microbiota/imunologia , Proteínas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Dieta , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Homeostase/imunologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Methylococcus capsulatus/química , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Obesidade/imunologia , Proteínas/metabolismo , Linfócitos T Reguladores/metabolismo
7.
Cell Mol Gastroenterol Hepatol ; 12(1): 229-250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33515804

RESUMO

BACKGROUND & AIMS: Cell differentiation in the colonic crypt is driven by a metabolic switch from glycolysis to mitochondrial oxidation. Mitochondrial and goblet cell dysfunction have been attributed to the pathology of ulcerative colitis (UC). We hypothesized that p32/gC1qR/HABP1, which critically maintains oxidative phosphorylation, is involved in goblet cell differentiation and hence in the pathogenesis of UC. METHODS: Ex vivo, goblet cell differentiation in relation to p32 expression and mitochondrial function was studied in tissue biopsies from UC patients versus controls. Functional studies were performed in goblet cell-like HT29-MTX cells in vitro. Mitochondrial respiratory chain complex V-deficient, ATP8 mutant mice were utilized as a confirmatory model. Nutritional intervention studies were performed in C57BL/6 mice. RESULTS: In UC patients in remission, colonic goblet cell differentiation was significantly decreased compared to controls in a p32-dependent manner. Plasma/serum L-lactate and colonic pAMPK level were increased, pointing at high glycolytic activity and energy deficiency. Consistently, p32 silencing in mucus-secreting HT29-MTX cells abolished butyrate-induced differentiation and induced a shift towards glycolysis. In ATP8 mutant mice, colonic p32 expression correlated with loss of differentiated goblet cells, resulting in a thinner mucus layer. Conversely, feeding mice an isocaloric glucose-free, high-protein diet increased mucosal energy supply that promoted colonic p32 level, goblet cell differentiation and mucus production. CONCLUSION: We here describe a new molecular mechanism linking mucosal energy deficiency in UC to impaired, p32-dependent goblet cell differentiation that may be therapeutically prevented by nutritional intervention.


Assuntos
Proteínas de Transporte/metabolismo , Colite Ulcerativa/metabolismo , Colo/metabolismo , Células Caliciformes/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Colite Ulcerativa/patologia , Células Caliciformes/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Células Tumorais Cultivadas
8.
Front Oncol ; 10: 575854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102234

RESUMO

Self-sustained cell proliferation constitutes one hallmark of cancer enabled by aerobic glycolysis which is characterized by imbalanced glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) activity, named the Warburg effect. The C1q binding protein (C1QBP; gC1qR) is pivotal for mitochondrial protein translation and thus OXPHOS activity. Due to its fundamental role in balancing OXPHOS and glycolysis, c1qbp -/- mice display embryonic lethality, while gC1qR is excessively up-regulated in cancer. Although gC1qR encompasses an N-terminal mitochondrial leader it is also located in other cellular compartments. Hence, we aimed to investigate mechanisms regulating gC1qR cellular localization and its impact on tumor cell metabolism. We identified two caspase-1 cleavage sites in human gC1qR. GC1qR cleavage by active caspase-1 was unraveled as a cellular mechanism that prevents mitochondrial gC1qR import, thereby enabling aerobic glycolysis and enhanced cell proliferation. Ex vivo, tumor grading correlated with non-mitochondrial-located gC1qR as well as with caspase-1 activation in colorectal carcinoma patients. Together, active caspase-1 cleaves gC1qR and boosts aerobic glycolysis in tumor cells.

9.
Nutrients ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316544

RESUMO

Non-caloric artificial sweeteners are frequently discussed as components of the "Western diet", negatively modulating intestinal homeostasis. Since the artificial sweetener saccharin is known to depict bacteriostatic and microbiome-modulating properties, we hypothesized oral saccharin intake to influence intestinal inflammation and aimed at delineating its effect on acute and chronic colitis activity in mice. In vitro, different bacterial strains were grown in the presence or absence of saccharin. Mice were supplemented with saccharin before or after induction of acute or chronic colitis using dextran sodium sulfate (DSS) and the extent of colitis was assessed. Ex vivo, intestinal inflammation, fecal bacterial load and composition were studied by immunohistochemistry analyses, quantitative PCR, 16 S RNA PCR or next generation sequencing in samples collected from analyzed mice. In vitro, saccharin inhibited bacterial growth in a species-dependent manner. In vivo, oral saccharin intake reduced fecal bacterial load and altered microbiome composition, while the intestinal barrier was not obviously affected. Of note, DSS-induced colitis activity was significantly improved in mice after therapeutic or prophylactic treatment with saccharin. Together, this study demonstrates that oral saccharin intake decreases intestinal bacteria count and hence encompasses the capacity to reduce acute and chronic colitis activity in mice.


Assuntos
Colite/tratamento farmacológico , Colite/microbiologia , Suplementos Nutricionais , Mucosa Intestinal/microbiologia , Sacarina/administração & dosagem , Sacarina/farmacologia , Doença Aguda , Administração Oral , Animais , Bacillus cereus/efeitos dos fármacos , Doença Crônica , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Inflamação , Klebsiella pneumoniae/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
10.
Inflamm Bowel Dis ; 26(12): 1856-1868, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32304568

RESUMO

Adherent-invasive Escherichia coli have been suggested to play a pivotal role within the pathophysiology of inflammatory bowel disease (IBD). Autoantibodies against distinct splicing variants of glycoprotein 2 (GP2), an intestinal receptor of the bacterial adhesin FimH, frequently occur in IBD patients. Hence, we aimed to functionally characterize GP2-directed autoantibodies as a putative part of IBD's pathophysiology. Ex vivo, GP2-splicing variant 4 (GP2#4) but not variant 2 was expressed on intestinal M or L cells with elevated expression patterns in IBD patients. The GP2#4 expression was induced in vitro by tumor necrosis factor (TNF)-α. The IBD-associated GP2 autoantibodies inhibited FimH binding to GP2#4 and were decreased in anti-TNFα-treated Crohn's disease patients with ileocolonic disease manifestation. In vivo, mice immunized against GP2 before infection with adherent-invasive bacteria displayed exacerbated intestinal inflammation. In summary, autoimmunity against intestinal expressed GP2#4 results in enhanced attachment of flagellated bacteria to the intestinal epithelium and thereby may drive IBD's pathophysiology.


Assuntos
Autoanticorpos/genética , Proteínas Ligadas por GPI/imunologia , Imunidade nas Mucosas/genética , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Adesinas de Escherichia coli/genética , Adulto , Processamento Alternativo/imunologia , Animais , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Feminino , Proteínas de Fímbrias/genética , Humanos , Masculino , Camundongos
11.
Front Nutr ; 7: 607937, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425975

RESUMO

Non-celiac wheat sensitivity (NCWS) has been proposed to be an independent disease entity that is characterized by intestinal (e.g., abdominal pain, flatulence) and extra-intestinal symptoms (e.g., headache, fatigue), which are propagated following the ingestion of wheat products. Increased activity of amylase trypsin inhibitors (ATIs) in modern wheat is suggested to be major trigger of NCWS, while underlying mechanisms still remain elusive. Here, we aimed to generate and functionally characterize the most abundant ATI in modern wheat, chloroform/methanol-soluble protein 3 (CM3), in vitro and in Drosophila melanogaster. We demonstrate that CM3 displays α-glucosidase but not α-amylase or trypsin inhibitory activity in vitro. Moreover, fruit flies fed a sucrose-containing diet together with CM3 displayed significant overgrowth of intestinal bacteria in a sucrose-dependent manner while the consumption of α-amylase and α-glucosidase inhibitors was sufficient to limit bacterial quantities in the intestine. Notably, both CM3 and acarbose-treated flies showed a reduced lifespan. However, this effect was absent in amylase inhibitor (AI) treated flies. Together, given α-glucosidase is a crucial requirement for disaccharide digestion, we suggest that inhibition of α-glucosidase by CM3 enhances disaccharide load in the distal gastrointestinal tract, thereby promoting intestinal bacteria overgrowth. However, it remains speculative if this here described former unknown function of CM3 might contribute to the development of gastrointestinal symptoms observed in NCWS patients which are very similar to symptoms of patients with small intestinal bacterial overgrowth.

12.
Front Oncol ; 10: 631592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33628739

RESUMO

Rapid proliferation of cancer cells is enabled by favoring aerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS). P32 (C1QBP/gC1qR) is essential for mitochondrial protein translation and thus indispensable for OXPHOS activity. It is ubiquitously expressed and directed to the mitochondrial matrix in almost all cell types with an excessive up-regulation of p32 expression reported for tumor tissues. We recently demonstrated high levels of non-mitochondrial p32 to be associated with high-grade colorectal carcinoma. Mutations in human p32 are likely to disrupt proper mitochondrial function giving rise to various diseases including cancer. Hence, we aimed to investigate the impact of the most common single nucleotide polymorphism (SNP) rs56014026 in the coding sequence of p32 on tumor cell metabolism. In silico homology modeling of the resulting p.Thr130Met mutated p32 revealed that the single amino acid substitution potentially induces a strong conformational change in the protein, mainly affecting the mitochondrial targeting sequence (MTS). In vitro experiments confirmed an impaired mitochondrial import of mutated p32-T130M, resulting in reduced OXPHOS activity and a shift towards a low metabolic phenotype. Overexpression of p32-T130M maintained terminal differentiation of a goblet cell-like colorectal cancer cell line compared to p32-wt without affecting cell proliferation. Sanger sequencing of tumor samples from 128 CRC patients identified the heterozygous SNP rs56014026 in two well-differentiated, low proliferating adenocarcinomas, supporting our in vitro data. Together, the SNP rs56014026 reduces metabolic activity and proliferation while promoting differentiation in tumor cells.

13.
Clin Exp Allergy ; 49(9): 1245-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265181

RESUMO

BACKGROUND: A close association between obesity and asthma has been described. The nature of this association remains elusive, especially with respect to allergic asthma. Controversial findings exist regarding the impact of short-term high-fat diet (HFD) feeding on the development of allergic asthma. OBJECTIVE: To delineate the impact of short-term HFD feeding on the development of experimental allergic asthma. METHODS: Female C57BL/6JRJ mice were fed with a short-term HFD or chow diet (CD) for 12 weeks. Allergic asthma was induced by intraperitoneal OVA/alum sensitization followed by repeated OVA airway challenges. We determined airway hyperresponsiveness (AHR) and pulmonary inflammation by histologic and flow cytometric analysis of immune cells. Furthermore, we assessed the impact of HFD on dendritic cell (DC)-mediated activation of T cells. RESULTS: Female mice showed a mild increase in body weight accompanied by mild metabolic alterations. Upon OVA challenge, CD-fed mice developed strong AHR and airway inflammation, which were markedly reduced in HFD-fed mice. Mucus production was similar in both treatment groups. OVA-induced increases in DC and CD4+ T-cell recruitment to the lungs were significantly attenuated in HFD-fed mice. MHC-II expression and CD40 expression in pulmonary CD11b+ DCs were markedly lower in HFD-fed compared to CD-fed mice, which was associated in vivo with a decreased T helper (Th) 1/17 differentiation and Treg formation without impacting Th2 differentiation. CONCLUSIONS/CLINICAL RELEVANCE: These findings suggest that short-term HFD feeding attenuates the development of AHR, airway inflammation, pulmonary DC recruitment and MHC-II/CD40 expression leading to diminished Th1/17 but unchanged Th2 differentiation. Thus, short-term HFD feeding and associated metabolic alterations may have protective effects in allergic asthma development.


Assuntos
Ração Animal , Asma/imunologia , Asma/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Asma/induzido quimicamente , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Feminino , Camundongos
14.
Front Med (Lausanne) ; 6: 103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143764

RESUMO

Today, daylight saving time is observed in nearly 80 countries around the world, including the European Union, the USA, Canada, and Russia. The benefits of daylight saving time in energy management have been questioned since it was first introduced during World War I and the latest research has led to varying results. Meanwhile, adverse effects of seasonal time shifts on human biology have been postulated and the European Union is planning to abandon the biannual clock change completely. Medical studies have revealed a correlation of seasonal time shifts with increased incidences of several diseases including stroke, myocardial infarction, and unipolar depressive episodes. Moreover, studies in mice have provided convincing evidence, that circadian rhythm disruption may be involved in the pathogenesis of inflammatory bowel diseases, mainly by disturbing the intestinal barrier integrity. Here, we present previously unpublished data from a large German cohort indicating a correlation of seasonal clock changes and medical leaves due to ulcerative colitis and Crohn's disease. Furthermore, we discuss the health risks of clock changes and the current attempts on reforming daylight saving time from a medical perspective.

15.
Cells ; 8(1)2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669641

RESUMO

Inflammatory bowel disease (IBD) is an umbrella term that comprises Crohn's disease (CD) and ulcerative colitis (UC). Both entities are characterized by a disturbed mucosal immune response and an imbalance of intestinal microbiota composition. The complement system (C) plays a critical role in the detection, and clearance of bacteria and dysregulation of single complement components has been linked to IBD. Here, we asked if the C contributes to distinct subtypes of inflammation observed in CD and UC. We performed systematical expression analyses of the intestinal C in IBD patients and controls. Immunohistochemistry or immunoblot experiments were performed to verify qPCR data. Activity of the three activation pathways of C was studied in sera samples. In CD patients a strong upregulation of the C was observed enabling the definition of unique expression patterns being associated either with remission or active disease. These data were reflected by an enhanced C activation in sera and fecal samples. An excessive mucosal presence of immunoglobulin M (IgM) and CR2/CD21 positive B cells in concert with decreased fecal IgA level was identified in CD patients in remission. These findings point to an exacerbated induction of the intestinal C that may potentially be involved in the etiology of CD.


Assuntos
Linfócitos B/imunologia , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Doença de Crohn/imunologia , Imunoglobulina M/metabolismo , Intestinos/imunologia , Doença de Crohn/sangue , Doença de Crohn/patologia , Fezes , Feminino , Humanos , Memória Imunológica , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Contagem de Linfócitos , Masculino , Modelos Imunológicos , Indução de Remissão , Regulação para Cima
16.
Biofactors ; 45(2): 169-186, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30496629

RESUMO

The health and life span of Drosophila melanogaster are partly determined by intestinal barrier integrity, metabolic rate as well as stress response and the expression of longevity-associated genes, depending on genetic and dietary factors. Ursolic acid (UA) is a naturally occurring triterpenoid exhibiting potential antimicrobial, anti-inflammatory, and antiobesity activity and counteracting age-related deficits in muscle strength. In this study, UA was dietarily administered to w1118 D. melanogaster which significantly elongated the health and life span of males. Spargel (srl) is the Drosophila orthologue of mammalian peroxisome proliferator-activated receptor-gamma coactivator 1 α(PGC1α), an important regulator of energy homeostasis and mitochondrial function. Our results indicate that the health-promoting effect of UA, demonstrated by a significant increase in climbing activity, occurs via an upregulation of srl expression leading to a metabolic shift in the fly without reducing fecundity or gut integrity. Moreover, UA affected the flies' microbiota in a manner that contributed to life span extension. Srl expression and microbiota both seem to be affected by UA, as we determined by using srl-mutant and axenic flies. © 2018 BioFactors, 45(2):169-186, 2019.


Assuntos
Longevidade/efeitos dos fármacos , Triterpenos/farmacologia , Ração Animal , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Triterpenos/administração & dosagem , Ácido Ursólico
17.
Methods Mol Biol ; 1827: 381-397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196508

RESUMO

Monoclonal antibodies are established treatment options in cancer therapy. However, not all patients benefit from antibody therapy. Basic research and findings from clinical trials revealed that certain Fc-mediated effector mechanisms triggered by monoclonal antibodies are essential for efficient antitumor activity. Today, next-generation monoclonal antibodies can be designed displaying tailor-made improved effector functions. The introduction of Fc-engineering technologies offers the potential to fine-tune Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, or complement-dependent cytotoxicity (CDC). Fc-engineered antibodies hopefully will overcome some limitations of current forms of antibody therapy.


Assuntos
Anticorpos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Complemento C1q/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Engenharia de Proteínas/métodos , Animais , Anticorpos/química , Células CHO , Cromatografia de Afinidade , Cricetinae , Cricetulus , Citotoxicidade Imunológica , Vetores Genéticos/metabolismo , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Lectinas/metabolismo , Receptores de IgG/metabolismo
18.
Semin Immunol ; 37: 66-73, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486961

RESUMO

The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function. Appropriate activation of the intestinal complement system seems to play an important role in the resolution of chronic intestinal inflammation, while over-activation and/or dysregulation may worsen intestinal inflammation. Mice deficient for single complement components suffer from enhanced intestinal inflammation mimicking the phenotype of patients with chronic inflammatory bowel disease (IBD) such as Crohn's disease (CD) or ulcerative colitis (UC). However, the mechanisms leading to complement expression in IECs seem to differ markedly between UC and CD patients. Hence, how IECs, intestinal bacteria and epithelial cell expressed complement components interact in the course of IBD still remains to be mostly elucidated to define potential unique patterns contributing to the distinct subtypes of intestinal inflammation observed in CD and UC.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Ativação do Complemento , Proteínas do Sistema Complemento/genética , Modelos Animais de Doenças , Humanos , Imunidade Inata , Camundongos , Camundongos Knockout , Moléculas com Motivos Associados a Patógenos/imunologia
20.
Mol Immunol ; 90: 227-238, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28843904

RESUMO

The complement system not only plays a critical role in efficient detection and clearance of bacteria, but also in intestinal immune homeostasis as mice deficient for key complement components display enhanced intestinal inflammation upon experimental colitis. Because underlying molecular mechanisms for this observation are unclear, we investigated the crosstalk between intestinal epithelial cells (IEC), bacteria and the complement system in the course of chronic colitis. Surprisingly, mouse intestinal epithelial cell lines constitutively express high mRNA levels of complement component 3 (C3), Toll-like receptor 2 (Tlr2) and Tlr4. Stimulation of these cells with lipopolysaccharide (LPS), but not with flagellin, LD-muramyldipeptide or peptidoglycan, triggered increased C3 expression, secretion and activation. Stimulation of the C3aR on these cell lines with C3a resulted in an increase of LPS-triggered pro-inflammatory response. Tissue biopsies from C57BL/6J mice revealed higher expression of C3, Tlr1, Tlr2 and Tlr4 in colonic primary IECs (pIECs) compared to ileal pIECs, while in germ-free mice no differences in C3 protein expression was observed. In DSS-induced chronic colitis mouse models, C3 mRNA expression was upregulated in colonic biopsies and ileal pIECs with elevated C3 protein in the lamina propria, IECs and the mucus. Notably, increased C3b opsonization of mucosa-attached bacteria and decreased fecal full-length C3 protein was observed in DSS-treated compared to untreated mice. Of significant interest, non-inflamed and inflamed colonic biopsy samples from CD but not UC patients displayed exacerbated C3 expression compared to controls. These findings suggest that a novel TLR4-C3 axis could control the intestinal immune response during chronic colitis.


Assuntos
Colite Ulcerativa/patologia , Complemento C3a/biossíntese , Complemento C3b/biossíntese , Células Epiteliais/metabolismo , Mucosa Intestinal/patologia , Animais , Bactérias/imunologia , Linhagem Celular , Colite Ulcerativa/induzido quimicamente , Complemento C3a/metabolismo , Complemento C3b/metabolismo , Sulfato de Dextrana/toxicidade , Humanos , Inflamação/patologia , Mucosa Intestinal/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Receptor 1 Toll-Like/biossíntese , Receptor 2 Toll-Like/biossíntese , Receptor 4 Toll-Like/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...