Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 93(3): 033304, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078481

RESUMO

We have developed a kinetic Monte Carlo numerical scheme, specifically suited to simulate structural transitions in crystalline materials, and implemented it for the case of epitaxial graphene on SiC. In this process, surface Si atoms selectively sublimate, while the residual C atoms rearrange from a position occupied in the SiC hexagonal lattice to the graphene honeycomb structure, modifying their hybridization (from sp(3) to sp(2)) and bond partners (from Si-C to C-C). The model is based on the assumption that the Monte Carlo particles follow the evolution of their reference crystal until they experience a thermally activated reversible transition to another crystal structure. We demonstrate that, in a formulation based on three parallel lattices, the method is able to recover the complex evolution steps of epitaxial graphene on SiC. Moreover, the simulation results are in noteworthy agreement with the overall experimental scenario, both when varying the structural properties of the material (e.g., the initial surface configuration or polarity) as well as the process conditions (e.g., the temperature and pressure).

2.
Nanoscale ; 5(2): 671-80, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23223677

RESUMO

Manipulation of graphene-based systems is a formidable challenge, since it requires the control of atomic interactions over long timescales. Although the effectiveness of a certain number of processes has been experimentally demonstrated, the underlying atomic mechanisms are often not understood. An import class of techniques relies on the interaction between hydrogen and graphene, which is the focus of this research. In particular, the growth of epitaxial graphene on SiC(0001) is subject to a single-atom-thick interface carbon layer strongly bound to the substrate, which can be detached through hydrogen intercalation. Here we report that a nucleation phenomenon induces the transformation of this buffer layer into graphene. We study the graphenization dynamics by an ab initio based method that permits the simulation of large systems with an atomic resolution, spanning the time scales from nanoseconds to hours. The early evolution stage (∼ms time scale) is characterised by the formation of a metastable H layer deposited on the C surface. H penetration in the interface between the C monolayer and the SiC(0001) surface is a rare event due to the large penetration barrier, which is ∼2 eV. However, at high H densities, energetically favoured Si-H bonding appears on the substrate's surface. The local increase of the H density at the interface due to statistical transitions leads to the graphenization of the overlying C atoms. Thermally activated density fluctuations promote the formation of these graphene-like islands on the buffer layer: this nucleation phenomenon is evidenced by our simulations at a later evolution stage (>10(2) s at 700 °C for ∼3.6 × 10(15) at. cm(-2) s(-1) H flux). Such nuclei grow and quasi-freestanding graphene forms if the exposition to the H flux continues for a sufficiently long time (∼30 min for the same conditions). We have systematically explored this phenomenon by varying the substrate temperature and the H flux, demonstrating that the surface morphology during graphenization and post-graphenization anneals significantly depends on these variables. The computational findings are consistent with the experimental analyses reported so far and could serve as guidelines for future experimental works on graphene manipulation.


Assuntos
Carbono/química , Grafite/química , Hidrogênio/química , Nanotecnologia/métodos , Simulação por Computador , Temperatura Alta , Cinética , Teste de Materiais , Modelos Estatísticos , Conformação Molecular , Silício/química , Propriedades de Superfície , Temperatura , Fatores de Tempo
3.
J Phys Condens Matter ; 22(9): 095504, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21389419

RESUMO

We implement a bottom-up multiscale approach for the modeling of defect localization in C(6n(2))H(6n) islands, i.e. graphene quantum dots with a hexagonal symmetry, by means of density functional and semiempirical approaches. Using the ab initio calculations as a reference, we recognize the theoretical framework under which semiempirical methods adequately describe the electronic structure of the studied systems and thereon proceed to the calculation of quantum transport within the nonequilibrium Green function formalism. The computational data reveal an impurity-like behavior of vacancies in these clusters and evidence the role of parameterization even within the same semiempirical context. In terms of conduction, failure to capture the proper chemical aspects in the presence of generic local alterations of the ideal atomic structure results in an improper description of the transport features. As an example, we show wavefunction localization phenomena induced by the presence of vacancies and discuss the importance of their modeling for the conduction characteristics of the studied structures.

4.
Nanoscale Res Lett ; 5(1): 158-163, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20652134

RESUMO

Structure and electronic properties of two unusual boron clusters obtained by fusion of borozene rings have been studied by means of first principles calculations based on the generalized-gradient approximation of the density functional theory. Moreover, a semiempirical tight-binding model has been appropriately calibrated for transport calculations on these clusters. Results show that the pure boron clusters are topologically planar and characterized by (3c-2e) bonds, which can explain, together with the aromaticity (estimated by means of NICS), the remarkable cohesive energy values obtained. Such feature makes these systems competitive with the most stable boron clusters to date. The energy gap values indicate that these clusters possess a semiconducting character, while when the larger system is considered, zero-values of the density of states are found exclusively within the HOMO-LUMO gap. Electron transport calculations within the Landauer formalism confirm these indications, showing semiconductor-like low bias differential conductance for these structures. Differences and similarities with carbon clusters are highlighted in the discussion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...