Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161270

RESUMO

Late blight is one of the most economically important diseases affecting potato and causing a significant loss in yield. The development of transgenic potato plants with enhanced resistance to infection by Phytophthora infestans may represent a possible approach to solving this issue. A comparative study of the leaf response in control potato plants (S.tuberosum L. cultivar Skoroplodnyi), control transgenic plants expressing the reporter gene of thermostable lichenase (transgenic licBM3 line) and transgenic plants expressing cyanobacterial hybrid genes ∆9-acyl-lipid desaturase (transgenic desC lines) and ∆12-acyl-lipid desaturase (transgenic desA lines) to infection with P. infestans has been performed. The expression of desaturase genes in potato plants enhanced their tolerance to potato late blight agents as compared with the control. The lipid peroxidation level raised in the leaves of the control and transgenic desA plants on third day after inoculation with P. infestans zoospores and remained the same in the transgenic desC plants. The number of total phenolic compounds was increased as early as on the second day after infection in all studied variants and continued to remain the same, except for transgenic desC plants. Accumulation of flavonoids, the main components of the potato leaf phenolic complex, raised on the second day in all studied variants, remained unchanged on the third day in the control plants and decreased in most transgenic plants expressing desaturase genes. The results obtained in our study demonstrate that the expression of genes of Δ9- and Δ12-acyl-lipid desaturases in potato plants enhanced their resistance to P. infestans as compared with the control non-transgenic plants due to concomitant accumulation of phenolic compounds, including flavonoids, in the leaves. All these changes were more pronounced in transgenic desC plants, which indicates that the Δ9-acyllipid desaturase gene appears to be a potential inducer of the production of biological antioxidants in plant cells.

2.
Plants (Basel) ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34371598

RESUMO

In the common chickweed Stellaria media, two antimicrobial peptides (AMPs), SmAMP1.1a and SmAMP1.2a, have been shown to be proteolytically released as products of the expression of a single gene, proSmAMP1. In this study, the gene proSmAMP1 was introduced into two potato varieties, Zhukovsky ranny and Udacha. These early-maturing varieties were shown to be susceptible to early blight caused by Alternaria spp. Most transgenic lines of either variety having strong expression of the target gene demonstrated high levels of resistance to Alternaria spp. during three years of cultivation, but did not otherwise differ from the initial varieties. Disease severity index (DSI) was introduced as a complex measure of plant susceptibility to early blight, taking into account the diameter of lesions caused by the Alternaria spp., the fungus sporulation intensity and its incubation period duration. Across all transgenic lines, the DSI inversely correlated both with the target gene expression and the copy number in the plant genome. Our results are promising for improving the resistance of potato and other crops to early blight by expression of AMPs from wild plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...