Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Heart Fail ; 13(11): 1185-92, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21750094

RESUMO

AIMS: Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) can both be due to mutations in the genes encoding ß-myosin heavy chain (MYH7) or cardiac myosin-binding protein C (MYBPC3). The aim of the present study was to determine the prevalence and spectrum of mutations in both genes in German HCM and DCM patients and to establish novel genotype-to-phenotype correlations. METHODS AND RESULTS: Coding exons and intron flanks of the two genes MYH7 and MYBPC3 of 236 patients with HCM and 652 patients with DCM were sequenced by conventional and array-based means. Clinical records were established following standard protocols. Mutations were detected in 41 and 11% of the patients with HCM and DCM, respectively. Differences were observed in the frequency of splice site and frame-shift mutations in the gene MYBPC3, which occurred more frequently (P< 0.02, P< 0.001, respectively) in HCM than in DCM, suggesting that cardiac myosin-binding protein C haploinsufficiency predisposes to hypertrophy rather than to dilation. Additional novel genotype-to-phenotype correlations were found in HCM, among these a link between MYBPC3 mutations and a particularly large thickness of the interventricular septum (P= 0.04 vs. carriers of a mutation in MYH7). Interestingly, this correlation and a link between MYH7 mutations and a higher degree of mitral valve regurgitation held true for both HCM and DCM, indicating that the gene affected by a mutation may determine the magnitude of structural and functional alterations in both HCM and DCM. CONCLUSION: A large clinical-genetic study has unravelled novel genotype-to-phenotype correlations in HCM and DCM which warrant future investigation of both the underlying mechanisms and the prognostic use.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Dilatada/epidemiologia , Cardiomiopatia Hipertrófica/epidemiologia , Predisposição Genética para Doença , Humanos , Mutação , Fenótipo
2.
PLoS One ; 2(12): e1362, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18159245

RESUMO

Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the alpha- and beta-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.


Assuntos
Ventrículos do Coração/metabolismo , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Cromossomos Humanos Par 14 , Feminino , Ligação Genética , Ventrículos do Coração/patologia , Humanos , Masculino , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...