Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 5(3)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430408

RESUMO

Bordetella pertussis regulates the production of its virulence factors by the two-component system BvgAS. In the virulence phase, BvgS phosphorylates BvgA, which then activates the transcription of virulence-activated genes (vags). In the avirulence phase, such as during growth in the presence of MgSO4, BvgA is not phosphorylated and the vags are not expressed. Instead, a set of virulence-repressed genes (vrgs) is expressed. Here, we performed transcriptome sequencing (RNAseq) analyses on B. pertussis cultivated with or without MgSO4 and on a BvgA-deficient Tohama I derivative. We observed that 146 genes were less expressed under modulating conditions or in the BvgA-deficient strain than under the nonmodulating condition, while 130 genes were more expressed. Some of the genes code for proteins with regulatory functions, suggesting a BvgA/S regulation cascade. To determine which genes are directly regulated by BvgA, we performed chromatin immunoprecipitation sequencing (ChIPseq) analyses. We identified 148 BvgA-binding sites, 91 within putative promoter regions, 52 within open reading frames, and 5 in noncoding regions. Among the former, 32 are in BvgA-regulated putative promoter regions. Some vags, such as dnt and fhaL, contain no BvgA-binding site, suggesting indirect BvgA regulation. Unexpectedly, BvgA also bound to some vrg putative promoter regions. Together, these observations indicate an unrecognized complexity of BvgA/S biology.IMPORTANCE Bordetella pertussis, the etiological agent of whooping cough, remains a major global health problem. Despite the global usage of whole-cell vaccines since the 1950s and of acellular vaccines in the 1990s, it still is one of the most prevalent vaccine-preventable diseases in industrialized countries. Virulence of B. pertussis is controlled by BvgA/S, a two-component system responsible for upregulation of virulence-activated genes (vags) and downregulation of virulence-repressed genes (vrgs). By transcriptome sequencing (RNAseq) analyses, we identified more than 270 vags or vrgs, and chromatin immunoprecipitation sequencing (ChIPseq) analyses revealed 148 BvgA-binding sites, 91 within putative promoter regions, 52 within open reading frames, and 5 in noncoding regions. Some vags, such as dnt and fhaL, do not contain a BvgA-binding site, suggesting indirect regulation. In contrast, several vrgs and some genes not identified by RNAseq analyses under laboratory conditions contain strong BvgA-binding sites, indicating previously unappreciated complexities of BvgA/S biology.

2.
Diabetes ; 67(7): 1310-1321, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29728363

RESUMO

In type 2 diabetes (T2D), hepatic insulin resistance is strongly associated with nonalcoholic fatty liver disease (NAFLD). In this study, we hypothesized that the DNA methylome of livers from patients with T2D compared with livers of individuals with normal plasma glucose levels can unveil some mechanism of hepatic insulin resistance that could link to NAFLD. Using DNA methylome and transcriptome analyses of livers from obese individuals, we found that hypomethylation at a CpG site in PDGFA (encoding platelet-derived growth factor α) and PDGFA overexpression are both associated with increased T2D risk, hyperinsulinemia, increased insulin resistance, and increased steatohepatitis risk. Genetic risk score studies and human cell modeling pointed to a causative effect of high insulin levels on PDGFA CpG site hypomethylation, PDGFA overexpression, and increased PDGF-AA secretion from the liver. We found that PDGF-AA secretion further stimulates its own expression through protein kinase C activity and contributes to insulin resistance through decreased expression of insulin receptor substrate 1 and of insulin receptor. Importantly, hepatocyte insulin sensitivity can be restored by PDGF-AA-blocking antibodies, PDGF receptor inhibitors, and by metformin, opening therapeutic avenues. Therefore, in the liver of obese patients with T2D, the increased PDGF-AA signaling contributes to insulin resistance, opening new therapeutic avenues against T2D and possibly NAFLD.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Fígado/metabolismo , Obesidade/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Metilação de DNA , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética/fisiologia , Feminino , Predisposição Genética para Doença , Humanos , Resistência à Insulina/genética , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Transdução de Sinais/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...