Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 7(5): e0030322, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040048

RESUMO

In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.


Assuntos
COVID-19 , Respiradores N95 , Humanos , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Peróxido de Hidrogênio/farmacologia , SARS-CoV-2 , Inativação de Vírus , Descontaminação/métodos , Estudos de Viabilidade , RNA Viral , Reutilização de Equipamento
2.
Am J Physiol ; 274(4): F658-64, 1998 04.
Artigo em Inglês | MEDLINE | ID: mdl-9575888

RESUMO

The influence of arachidonic acid (AA) on the feedback regulation of mesangial contraction by large Ca(2+)-activated K+ channels (BKCa) was determined through single-channel analysis using the patch clamp method. The mesangial BKCa is a low-gain negative feedback inhibitor of contraction that is activated in response to agonist-induced Ca2+ transients and membrane depolarization. AA activated BKCa in cell-attached patches in a dose-dependent manner with a maximal effect at 400 nM and a half-maximal response at 49 nM. In inside-out patches, AA directly activated BKCa with a maximal effect at 400 nM. BKCa was activated significantly in response to addition of 100 nM ANG II in the presence but not the absence of AA. Since it was shown previously that fatty acids stimulated both soluble and membrane-bound guanylyl cyclase, we determined whether AA activated BKCa by interfering with cGMP-mediated signal transduction pathways. It was previously shown that 10 microM cGMP, via cGMP-dependent protein kinase, activated BKCa in a biphasic manner with an early increase in probability of a channel existing in an open state (Po) and a subsequent inactivation mediated by protein phosphatase 2A (PP2A). We found that 10 microM dibutyryl-cGMP enhanced BKCa activity in an additive manner with saturating concentrations (400 nM) of AA. Moreover, the inactivation phase mediated by PP2A was not abolished. Thus AA does not affect the phosphorylation/dephosphorylation regulatory cycle for BKCa. It is concluded that AA potentiates the ANG II feedback response of BKCa by a mechanism that is independent of the phosphorylation cycle.


Assuntos
Angiotensina II/farmacologia , Ácido Araquidônico/farmacologia , Cálcio/fisiologia , Mesângio Glomerular/metabolismo , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Células Cultivadas , GMP Cíclico/farmacologia , Retroalimentação , Mesângio Glomerular/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...