Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Interv Med ; 6(3): 137-139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37846338

RESUMO

Percutaneous abscess drainage is a procedure commonly performed by interventional radiologists to provide source control on infections using CT or ultrasound guidance. The interventionalist has many different sizes and shapes of catheters to treat abscesses of varying sizes and locations, but the general approach to each abscess is similar: provide a percutaneous route for purulence, bacteria, necrotic tissue, and other debris to escape the body. While generally considered a low-risk procedure, adverse events can occur due to operator error or other means. We present a unique case of an abscess drain placed into a right upper quadrant abscess that formed following laparoscopic cholecystectomy that perforated and entered the colon. Astute physicians, both in the emergency department and the radiology reading room, were able to rapidly rule out more common post-operative complications and make the correct diagnosis, likely preventing dangerous sequelae from developing in this patient.

3.
Cell Metab ; 34(11): 1779-1791.e9, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240759

RESUMO

Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing ß cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand ß cells, whereas the pore-forming host defense protein, Reg3, stimulates ß cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for ß cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.


Assuntos
Diabetes Mellitus , Microbiota , Camundongos , Animais , Peixe-Zebra , Pâncreas/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Proteínas/metabolismo
4.
Commun Biol ; 5(1): 1066, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207580

RESUMO

The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.


Assuntos
Fator de Crescimento Epidérmico , Proteômica , Fator de Crescimento Epidérmico/farmacologia , Proteínas da Matriz Extracelular , Ligantes , Fenótipo
5.
Cell Rep Med ; 2(5): 100267, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095877

RESUMO

The lack of effective treatment options for advanced non-clear cell renal cell carcinoma (NCCRCC) is a critical unmet clinical need. Applying a high-throughput drug screen to multiple human kidney cancer cells, we identify the combination of the VEGFR-MET inhibitor cabozantinib and the SRC inhibitor dasatinib acts synergistically in cells to markedly reduce cell viability. Importantly, the combination is well tolerated and causes tumor regression in vivo. Transcriptional and phosphoproteomic profiling reveals that the combination converges to downregulate the MAPK-ERK signaling pathway, a result not predicted by single-agent analysis alone. Correspondingly, the addition of a MEK inhibitor synergizes with either dasatinib or cabozantinib to increase its efficacy. This study, by using approved, clinically relevant drugs, provides the rationale for the design of effective combination treatments in NCCRCC that can be rapidly translated to the clinic.


Assuntos
Anilidas/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Dasatinibe/farmacologia , Piridinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
6.
PLoS Comput Biol ; 17(2): e1008562, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617524

RESUMO

Effective regulation of the sonic hedgehog (Shh) signalling pathway is essential for normal development in a wide variety of species. Correct Shh signalling requires the formation of Shh aggregates on the surface of producing cells. Shh aggregates subsequently diffuse away and are recognised in receiving cells located elsewhere in the developing embryo. Various mechanisms have been postulated regarding how these aggregates form and what their precise role is in the overall signalling process. To understand the role of these mechanisms in the overall signalling process, we formulate and analyse a mathematical model of Shh aggregation using nonlinear ordinary differential equations. We consider Shh aggregate formation to comprise of multimerisation, association with heparan sulfate proteoglycans (HSPG) and binding with lipoproteins. We show that the size distribution of the Shh aggregates formed on the producing cell surface resembles an exponential distribution, a result in agreement with experimental data. A detailed sensitivity analysis of our model reveals that this exponential distribution is robust to parameter changes, and subsequently, also to variations in the processes by which Shh is recruited by HSPGs and lipoproteins. The work demonstrates the time taken for different sized Shh aggregates to form and the important role this likely plays in Shh diffusion.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Lipoproteínas/química , Transdução de Sinais , Algoritmos , Membrana Celular/metabolismo , Simulação por Computador , Difusão , Proteínas Hedgehog/metabolismo , Humanos , Modelos Teóricos , Ligação Proteica
7.
Sci Rep ; 10(1): 21750, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303959

RESUMO

Representative in vitro model systems that accurately model response to therapy and allow the identification of new targets are important for improving our treatment of prostate cancer. Here we describe molecular characterization and drug testing in a panel of 20 prostate cancer cell lines. The cell lines cluster into distinct subsets based on RNA expression, which is largely driven by functional Androgen Receptor (AR) expression. KLK3, the AR-responsive gene that encodes prostate specific antigen, shows the greatest variability in expression across the cell line panel. Other common prostate cancer associated genes such as TMPRSS2 and ERG show similar expression patterns. Copy number analysis demonstrates that many of the most commonly gained (including regions containing TERC and MYC) and lost regions (including regions containing TP53 and PTEN) that were identified in patient samples by the TCGA are mirrored in the prostate cancer cell lines. Assessment of response to the anti-androgen enzalutamide shows a distinct separation of responders and non-responders, predominantly related to status of wild-type AR. Surprisingly, several AR-null lines responded to enzalutamide. These AR-null, enzalutamide-responsive cells were characterized by high levels of expression of glucocorticoid receptor (GR) encoded by NR3C1. Treatment of these cells with the anti-GR agent mifepristone showed that they were more sensitive to this drug than enzalutamide, as were several of the enzalutamide non-responsive lines. This is consistent with several recent reports that suggest that GR expression is an alternative signaling mechanism that can bypass AR blockade. This study reinforces the utility of large cell line panels for the study of cancer and identifies several cell lines that represent ideal models to study AR-null cells that have upregulated GR to sustain growth.


Assuntos
Antagonistas de Androgênios/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Masculino , Mifepristona/farmacologia , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , RNA/genética , RNA/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores
8.
Oncogene ; 38(28): 5658-5669, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996246

RESUMO

BET bromodomain inhibitors block prostate cancer cell growth at least in part through c-Myc and androgen receptor (AR) suppression. However, little is known about other transcriptional regulators whose suppression contributes to BET bromodomain inhibitor anti-tumor activity. Moreover, the anti-tumor activity of BET bromodomain inhibition in AR-independent castration-resistant prostate cancers (CRPC), whose frequency is increasing, is also unknown. Herein, we demonstrate that BET bromodomain inhibition blocks growth of a diverse set of CRPC cell models, including those that are AR-independent or in which c-Myc is not suppressed. To identify transcriptional regulators whose suppression accounts for these effects, we treated multiple CRPC cell lines with the BET bromodomain inhibitor JQ1 and then performed RNA-sequencing followed by Master Regulator computational analysis. This approach identified several previously unappreciated transcriptional regulators that are highly expressed in CRPC and whose suppression, via both transcriptional or post-translational mechanisms, contributes to the anti-tumor activity of BET bromodomain inhibitors.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Animais , Azepinas/farmacologia , Benzamidas , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos SCID , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Biossíntese de Proteínas , Fatores de Transcrição/fisiologia , Transcrição Gênica , Triazóis/farmacologia
9.
Sci Rep ; 9(1): 3823, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846826

RESUMO

The BET bromodomain protein BRD4 is a chromatin reader that regulates transcription, including in cancer. In prostate cancer, specifically, the anti-tumor activity of BET bromodomain inhibition has been principally linked to suppression of androgen receptor (AR) function. MYC is a well-described BRD4 target gene in multiple cancer types, and prior work demonstrates that MYC plays an important role in promoting prostate cancer cell survival. Importantly, several BET bromodomain clinical trials are ongoing, including in prostate cancer. However, there is limited information about pharmacodynamic markers of response or mediators of de novo resistance. Using a panel of prostate cancer cell lines, we demonstrated that MYC suppression-rather than AR suppression-is a key determinant of BET bromodomain inhibitor sensitivity. Importantly, we determined that BRD4 was dispensable for MYC expression in the most resistant cell lines and that MYC RNAi + BET bromodomain inhibition led to additive anti-tumor activity in the most resistant cell lines. Our findings demonstrate that MYC suppression is an important pharmacodynamic marker of BET bromodomain inhibitor response and suggest that targeting MYC may be a promising therapeutic strategy to overcome de novo BET bromodomain inhibitor resistance in prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Triazóis/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...