Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 8: 101185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33384948

RESUMO

Electrical impedance spectroscopy was performed on suspensions of plant cells in aqueous buffer media over a wide frequency range of 4 Hz to 20 GHz. Custom probes were designed, manufactured, and used for these investigations. Experiments were performed with a custom-made parallel plate probe and impedance analysers in the low-frequency range (4 Hz to 5 MHz), with a custom-made coaxial airline probe and a vector network analyser in the mid-frequency range (100 kHz to 3 GHz), and with a commercial open-ended probe and a vector network analyser in the high-frequency range (200 MHz to 20 GHz). The impedance data acquired were processed in order to eliminate the effects of parasitics and compensate for geometrical differences between the three probes. Following this, the data were fitted to a unified model consisting of the Randles and Debye models. The data were also normalized to a reference measurement, in order to accentuate the effects of cell concentration on the impedance of the suspensions.•The methodology allows for impedance spectroscopy of cell suspensions over a wide frequency range spanning 10 orders of magnitude.•It allows for compensation of parasitics and of geometrical variations between probes, using mathematical techniques.

2.
Biosens Bioelectron ; 168: 112485, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896772

RESUMO

A simple, ultra-wide frequency range, equivalent circuit for plant cell suspensions is presented. The model incorporates both the interfacial interactions of the suspension with the electrode, dominant at low frequencies, and the molecule and cell polarization mechanisms dominant at higher frequencies. Such model is useful for plant cell characterization allowing a single set of parameters over >9 orders of magnitude, whilst allows electronic simulations over the whole frequency range using a single model, simplifying the design of electronic systems of integrated plant cell sensors. The model has been experimentally validated in the frequency range of 4 Hz-20 GHz with each component in the circuit representing a physical phenomenon. Various cell concentrations (MSK8 tomato cells in Murashige and Skoog media) have been investigated, showing clear correlations of the cell capacitance increasing within the range of 200-600 pF, whilst cell resistance (R) decreasing within the range of approximately 0.8-3 kΩ within the cell concentration X-Y cells/mL range. This is the first model ever reported that covers such a wide frequency range and includes both interfacial and polarization effects in this simple form.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Impedância Elétrica , Eletrodos , Células Vegetais
3.
Artif Cells Nanomed Biotechnol ; 46(3): 637-649, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28639839

RESUMO

With increasing gap in the demand and supply of vital organs for transplantation there is a pressing need to bridge the gap with substitutes. One way to make substitutes is by tissue engineering which involves combining several types of synthetic or biomaterials, cells and growth factors cross-linked together to synthesize a functional scaffold for repair or replacement of non-functional organs. Nanoparticle based composites are gaining importance in tissue engineering due to their ability to enhance cell attachment and proliferation. The current study focuses on synthesizing agarose composites embedded with chitosan-coated silver nanoparticles using glutaraldehyde as the cross-linker. The synthesis of chitosan coated silver nanoparticles within the scaffold was confirmed with UV-visible spectroscopy. Physical and chemical characterization of the synthesized nanoparticles were done by XRD, FTIR, TGA and SEM. DMA showed higher mechanical strength of the scaffolds. The scaffolds showed degradation of ∼37% within a span of four weeks. The higher physical support provided by the synthesized scaffolds was shown by in-vitro cell viability assay. Broad spectrum anti-bacterial activity and superior hemocompatibility further showed the advantage it offered for growing cells. Thus a biopolymer based nanocomposite was synthesized, with intended widespread use as scaffold for engineering of soft tissues due to its enhanced biocompatibility and greater surface area for cell growth.


Assuntos
Quitosana , Materiais Revestidos Biocompatíveis , Teste de Materiais , Nanopartículas/química , Sefarose , Engenharia Tecidual , Quitosana/química , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Células HeLa , Humanos , Sefarose/química , Sefarose/farmacologia , Prata/química , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...