Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566594

RESUMO

Objective: Current guidelines for gout recommend a treat-to-target approach with serum uric acid (SUA). However, there is little evidence for the dose-dependent effects of urate-lowering therapy (ULT). Herein, we analyzed the reported SUA-lowering effect and SUA target achievement differences for various doses of xanthine oxidase inhibitors. Methods: Approved ULT drugs were selected from the FDA Drug Database. We included prospective randomized controlled trials of ULT drugs from ClinicalTrials.gov, articles published in the journal "Drugs", and Embase, a literature database. A meta-analysis was performed to determine the ability of different ULT drugs and doses to lower and maintain a target SUA < 6 mg/dL. Results: We identified 35 trials including 8172 patients with a baseline SUA of 8.92 mg/dL. The allopurinol, febuxostat, and topiroxostat showed dose-proportional SUA-lowering responses. Compared with allopurinol 300 mg daily, febuxostat 80 mg daily and 120 mg daily more effectively maintained SUA < 6 mg/dL. Conclusion: Allopurinol, febuxostat, and topiroxostat showed dose-proportional ability to lower and achieve a target SUA < 6 mg/dL. Significance and Innovations. We showed dose-dependent SUA lowering effects of allopurinol, febuxostat, and topiroxostat. Febuxostat is effective at ULT compared to allopurinol and could be potentially offered as an alternative agent when patients (1) have CKD, (2) have the human leukocyte antigen HLA-B*5801 allele, and (3) become refractory to allopurinol. Gradual allopurinol dose increase with a lower starting dose is needed in CKD.

2.
Phys Rev E ; 104(3-2): 035310, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654151

RESUMO

Recent advances show that neural networks embedded with physics-informed priors significantly outperform vanilla neural networks in learning and predicting the long-term dynamics of complex physical systems from noisy data. Despite this success, there has only been a limited study on how to optimally combine physics priors to improve predictive performance. To tackle this problem we unpack and generalize recent innovations into individual inductive bias segments. As such, we are able to systematically investigate all possible combinations of inductive biases of which existing methods are a natural subset. Using this framework we introduce variational integrator graph networks-a novel method that unifies the strengths of existing approaches by combining an energy constraint, high-order symplectic variational integrators, and graph neural networks. We demonstrate, across an extensive ablation, that the proposed unifying framework outperforms existing methods, for data-efficient learning and in predictive accuracy, across both single- and many-body problems studied in the recent literature. We empirically show that the improvements arise because high-order variational integrators combined with a potential energy constraint induce coupled learning of generalized position and momentum updates which can be formalized via the partitioned Runge-Kutta method.

3.
Phys Rev E ; 104(3-1): 034312, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654178

RESUMO

Accurately learning the temporal behavior of dynamical systems requires models with well-chosen learning biases. Recent innovations embed the Hamiltonian and Lagrangian formalisms into neural networks and demonstrate a significant improvement over other approaches in predicting trajectories of physical systems. These methods generally tackle autonomous systems that depend implicitly on time or systems for which a control signal is known a priori. Despite this success, many real world dynamical systems are nonautonomous, driven by time-dependent forces and experience energy dissipation. In this study, we address the challenge of learning from such nonautonomous systems by embedding the port-Hamiltonian formalism into neural networks, a versatile framework that can capture energy dissipation and time-dependent control forces. We show that the proposed port-Hamiltonian neural network can efficiently learn the dynamics of nonlinear physical systems of practical interest and accurately recover the underlying stationary Hamiltonian, time-dependent force, and dissipative coefficient. A promising outcome of our network is its ability to learn and predict chaotic systems such as the Duffing equation, for which the trajectories are typically hard to learn.

4.
Sci Rep ; 10(1): 15795, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978473

RESUMO

We use a data-driven approach to study the magnetic and thermodynamic properties of van der Waals (vdW) layered materials. We investigate monolayers of the form [Formula: see text], based on the known material [Formula: see text], using density functional theory (DFT) calculations and machine learning methods to determine their magnetic properties, such as magnetic order and magnetic moment. We also examine formation energies and use them as a proxy for chemical stability. We show that machine learning tools, combined with DFT calculations, can provide a computationally efficient means to predict properties of such two-dimensional (2D) magnetic materials. Our data analytics approach provides insights into the microscopic origins of magnetic ordering in these systems. For instance, we find that the X site strongly affects the magnetic coupling between neighboring A sites, which drives the magnetic ordering. Our approach opens new ways for rapid discovery of chemically stable vdW materials that exhibit magnetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...