Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 20(206): 20230265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669695

RESUMO

Neurons' primary function is to encode and transmit information in the brain and body. The branching architecture of axons and dendrites must compute, respond and make decisions while obeying the rules of the substrate in which they are enmeshed. Thus, it is important to delineate and understand the principles that govern these branching patterns. Here, we present evidence that asymmetric branching is a key factor in understanding the functional properties of neurons. First, we derive novel predictions for asymmetric scaling exponents that encapsulate branching architecture associated with crucial principles such as conduction time, power minimization and material costs. We compare our predictions with extensive data extracted from images to associate specific principles with specific biophysical functions and cell types. Notably, we find that asymmetric branching models lead to predictions and empirical findings that correspond to different weightings of the importance of maximum, minimum or total path lengths from the soma to the synapses. These different path lengths quantitatively and qualitatively affect energy, time and materials. Moreover, we generally observe that higher degrees of asymmetric branching-potentially arising from extrinsic environmental cues and synaptic plasticity in response to activity-occur closer to the tips than the soma (cell body).


Assuntos
Axônios , Neurônios , Humanos , Sinapses , Biofísica , Peso Corporal
2.
bioRxiv ; 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37292687

RESUMO

Neurons' primary function is to encode and transmit information in the brain and body. The branching architecture of axons and dendrites must compute, respond, and make decisions while obeying the rules of the substrate in which they are enmeshed. Thus, it is important to delineate and understand the principles that govern these branching patterns. Here, we present evidence that asymmetric branching is a key factor in understanding the functional properties of neurons. First, we derive novel predictions for asymmetric scaling exponents that encapsulate branching architecture associated with crucial principles such as conduction time, power minimization, and material costs. We compare our predictions with extensive data extracted from images to associate specific principles with specific biophysical functions and cell types. Notably, we find that asymmetric branching models lead to predictions and empirical findings that correspond to different weightings of the importance of maximum, minimum, or total path lengths from the soma to the synapses. These different path lengths quantitatively and qualitatively affect energy, time, and materials. Moreover, we generally observe that higher degrees of asymmetric branching- potentially arising from extrinsic environmental cues and synaptic plasticity in response to activity- occur closer to the tips than the soma (cell body).

3.
Sci Rep ; 12(1): 20810, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460669

RESUMO

Neurons are connected by complex branching processes-axons and dendrites-that process information for organisms to respond to their environment. Classifying neurons according to differences in structure or function is a fundamental part of neuroscience. Here, by constructing biophysical theory and testing against empirical measures of branching structure, we develop a general model that establishes a correspondence between neuron structure and function as mediated by principles such as time or power minimization for information processing as well as spatial constraints for forming connections. We test our predictions for radius scale factors against those extracted from neuronal images, measured for species that range from insects to whales, including data from light and electron microscopy studies. Notably, our findings reveal that the branching of axons and peripheral nervous system neurons is mainly determined by time minimization, while dendritic branching is determined by power minimization. Our model also predicts a quarter-power scaling relationship between conduction time delay and body size.


Assuntos
Axônios , Neurônios , Animais , Fenômenos Físicos , Sistema Nervoso Periférico , Cetáceos , Dendritos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA