Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Comput Aided Drug Des ; 19(4): 300-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578253

RESUMO

BACKGROUND: Hydrazide-hydrazone derivatives have shown diverse biological activities, such as antitubercular (anti-TB), antibacterial, antifungal, anticancer, anti-inflammatory, antiviral, and antiprotozoal actions. OBJECTIVES: Hydrazide-hydrazones contain azomethine (-NH-N=CH-) group connected with carbonyl group and are believed to be responsible for various pharmaceutical applications. They aid in the synthesis of different five-membered heterocyclic systems, such as oxadiazole, triazoles, etc. Methods: In the present study, various hydrazines/hydrazones were synthesized starting from 4- amino benzoic acid derivatives. Structures of all 9 newly synthesized compounds (6a-6d and 8a- 8e) were further characterized by using various spectroscopic methods, such as 1H-NMR (Nuclear Magnetic Resonance), FT-IR (Fourier-transform infrared spectroscopy), Gas chromatographymass spectrometry (GC-MS), etc. Furthermore, molecular docking analysis against the acyl-CoA carboxylase, AccD5 (PDB ID: 2A7S), was also carried out using the Glide module, which depicted good binding scores than standard drugs. The anti-tuberculosis activity of all the hydrazides and hydrazones (6a-6d and 8a-8e) were evaluated against the Mycobacterium tuberculosis H37 RV strain using the Alamar-Blue susceptibility (MABA) test. The activity was expressed as the minimum inhibitory concentration (MIC) in µg/mL values. The antioxidant activity was also carried out using a DPPH assay. RESULTS: Our findings demonstrated highly encouraging in-vitro results (MABA assay, MIC: 1.2 µg/mL) of hydrazones as depicted by good antimycobacterial activity. The antioxidant results showed a moderate to a good percentage of DPPH inhibition. Our in-silico ADMET analysis further suggested good pharmacokinetic and toxicity-free profiles of synthesized analogues (6a-6d and 8a-8e). CONCLUSION: Our results signify hydrazones/hydrazines as potential hit candidates against the future developments of potent and safer anti-TB agents.


Assuntos
Hidrazonas , Mycobacterium tuberculosis , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrazinas , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
2.
Curr Comput Aided Drug Des ; 17(4): 493-503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32538732

RESUMO

BACKGROUND: For the past several decades, the presence of tuberculosis (TB) is being remarked as the most common infectious disease leading to mortality. OBJECTIVE: Hydrazone containing azometine group (-NHN=CH-) compounds have been reported for a broad range of bioactivities such as antiplatelet, analgesic, anti-inflammatory, anticonvulsant, antidepressant, antimalarial, vasodilator, antiviral, and antimicrobial, etc. Methods: For the synthesis of compounds (4a-4d) and (6a-6e), aromatic amines were treated with methyl terephthalaldehydate in methanol, giving Schiff's bases, followed by reductive amination and further treatment with hydrazine hydrate gave acid hydrazides (4a-4d). These acid hydrazides were then treated with different aromatic aldehydes to yield hydrazones (6a-6d). All the synthesized compounds were subjected to FT-IR, NMR, and UV spectroscopic characterization. RESULTS: Compounds (4a-4d) and (6a-6e) were found to have highly potent activity against Mycobacteria tuberculosis (Vaccine strain, H37 RV strains): ATCC No- 27294 (MIC:1.6-6.25 µg/mL) than standard anti-TB drugs. The compounds exhibited good radical scavenging potentials(0- 69.2%), as checked from DPPH protocol. All compounds also demonstrated good in-silico ADMET results. CONCLUSION: The current study revealed promising in vitro anti-tuberculosis and anti-oxidant profiles of hydrazide-hydrazone analogues.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Humanos , Hidrazonas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
3.
Curr Comput Aided Drug Des ; 16(5): 618-628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31648645

RESUMO

BACKGROUND: The treatment of multiple-drug-resistant tuberculosis (MDR-TB) with currently available marketed drugs remains a global health concern. The cases of resistant tuberculosis patients are increasing day by day. OBJECTIVE: The objective of this study is to highlight the need of developing shorter, simpler and tolerable drug regimens. METHODS: In the present study, we synthesized various halo-substituted 2-aryloxyacetohydrazones via a series of reactions from halo-substituted phenols. All the compounds were characterized by using various spectroscopic methods, such as NMR, FT-IR, UV spectroscopy, etc. Results: All the synthesized hydrazones showed theoretically good interactions with enzyme enoyl reductase (pdb id: 4tzk). All the synthesized compounds (5a-5o) showed moderate to good activity (3.125-100 µg/mL) against Mycobacteria tuberculosis, H37RV strain. CONCLUSION: Our results would pave a new way for the development of more effective Anti-TB agents in the future.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Hidrazonas/síntese química , Hidrazonas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tuberculose Resistente a Múltiplos Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...