Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 76(11): 1329-1334, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35712891

RESUMO

High-throughput (HTP) research is becoming more widely utilized due to its advantages in rapid screening of large parameter space. When HTP is used for reaction screening, often only the end products are analyzed by off-line techniques, leaving behind valuable process information. Information-rich spectroscopy tools have remained under-utilized in HTP workflows. In this study, near-infrared (NIR) hyperspectral imaging (HSI) is demonstrated to be a versatile and accurate tool that can simultaneously monitor multiple reactions, opening up future opportunities to maximize information extraction from such HTP reaction screening experiments. Model urethane reactions are used here to demonstrate the concept, and the general approach can be widely applied to any reactions involving NIR-active functional groups. The fast speed and accurate chemical information made possible by NIR HSI are expected be another important addition to the toolkit of HTP research.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Uretana , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Imageamento Hiperespectral
2.
ACS Appl Mater Interfaces ; 10(46): 40203-40211, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30396273

RESUMO

We recently reported a new molecular heterocyclic friction modifier (FM) that exhibits excellent friction and wear reduction in the boundary lubrication regime. This paper explores the mechanisms by which friction reduction occurs with heterocyclic alkyl-cyclen FM molecules. We find that these chelating molecules adsorb onto (oxidized) steel surfaces far more tenaciously than conventional FMs such as simple alkylamines. Molecular dynamics simulations argue that the surface coverage of our heterocyclic FM molecules remains close to 100% even at 200 °C. This thermal stability allows the FMs to firmly anchor to the surface, allowing the hydrocarbon chains of the molecules to interact and trap base oil lubricant molecules. This results in thicker boundary film thickness compared with conventional FMs, as shown by optical interferometry measurements.

3.
ACS Appl Mater Interfaces ; 9(10): 9118-9125, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219241

RESUMO

Modern automotive engines operate at higher power densities than ever before, driving a need for new lubricant additives capable of reducing friction and wear further than ever before while not poisoning the catalytic converter. Reported in this paper is a new class of molecular friction modifier (FM), represented by 1,4,7,10-tetradodecyl-1,4,7,10-tetraazacyclododecane (1a), designed to employ thermally stable, sulfur- and phosphorus-free alkyl-substituted nitrogen heterocycles with multiple nitrogen centers per molecule. The multiple nitrogen centers enable cooperative binding to a surface which provides strong surface adsorption and lubricant film durability in the boundary lubrication (BL) regime. A 1 wt % loading of the cyclen FM 1a in Group III base oil exhibits strong surface adsorption, leading to excellent reductions in friction (70%) and wear (95%) versus the pure Group III oil across a wide temperature range. The lubricant with the new FM additive also outperforms two commercially available noncyclic amine-based FMs and a fully formulated commercial 5W30 motor oil.

4.
ACS Appl Mater Interfaces ; 8(21): 13637-45, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27163783

RESUMO

A major challenge in lubrication technology is to enhance lubricant performance at extreme temperatures that exceed conventional engine oil thermal degradation limits. Soft noble metals such as silver have low reactivity and shear strength, which make them ideal solid lubricants for wear protection and friction reduction between contacting surfaces at high temperatures. However, achieving adequate dispersion in engine lubricants and metallic silver deposition over predetermined temperatures ranges presents a significant chemical challenge. Here we report the synthesis, characterization, and tribological implementation of the trimeric silver pyrazolate complex, [Ag(3,5-dimethyl-4-n-hexyl-pyrazolate)]3 (1). This complex is oil-soluble and undergoes clean thermolysis at ∼310 °C to deposit lubricious, protective metallic silver particles on metal/metal oxide surfaces. Temperature-controlled tribometer tests show that greater than 1 wt % loading of 1 reduces wear by 60% in PAO4, a poly-α-olefin lubricant base fluid, and by 70% in a commercial fully formulated 15W40 motor oil (FF oil). This silver-organic complex also imparts sufficient friction reduction so that the tribological transition from oil as the primary lubricant through its thermal degradation, to 1 as the primary lubricant, is experimentally undetectable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...