Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 152: 73-84, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959064

RESUMO

The class I aldolase dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the diaminopimelate (DAP) lysine biosynthesis pathway in bacteria, archaea and plants. Despite the existence, in databases, of numerous fungal sequences annotated as DHDPS, its presence in fungi has been the subject of contradictory claims. We report the characterization of DHDPS candidates from fungi. Firstly, the putative DHDPS from Coccidioides immitis (PDB ID: 3QFE) was shown to have negligible enzyme activity. Sequence analysis of 3QFE showed that three out of the seven amino acid residues critical for DHDPS activity are absent; however, exact matches to catalytic residues from two other class I aldolases, 2-keto-3-deoxygluconate aldolase (KDGA), and 4-hydroxy-2-oxoglutarate aldolase (HOGA), were identified. The presence of both KDGA and HOGA activity in 3QFE was confirmed in vitro using enzyme assays, the first report of such dual activity. Subsequent analyses of all publically available fungal sequences revealed that no entry contains all seven residues important for DHDPS function. The candidate with the highest number of identities (6 of 7), KIW77228 from Fonsecaea pedrosoi, was shown to have trace DHDPS activity in vitro, partially restored by substitution of the seventh critical residue, and to be incapable of complementing DHDPS-deficient E. coli cells. Combined with the presence of all seven sequences for the alternative α-aminoadipate (AAA) lysine biosynthesis pathway in C. immitis and F. pedrosoi, we believe that DHDPS and the DAP pathway are absent in fungi, and further, that robust informed methods for annotating genes need to be implemented.


Assuntos
Fungos/enzimologia , Hidroliases/metabolismo , Sequência de Aminoácidos , Catálise , Biologia Computacional , Bases de Dados de Proteínas , Fungos/classificação , Hidroliases/química , Filogenia , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
2.
Proteins ; 85(11): 2058-2065, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28748551

RESUMO

Agrobacterium tumefaciens is a Gram-negative bacterium and causative agent of Crown Gall disease that infects a variety of economically important plants. The annotated A. tumefaciens genome contains 10 putative dapA genes, which code for dihydrodipicolinate synthase (DHDPS). However, we have recently demonstrated that only one of these genes (dapA7) encodes a functional DHDPS. The function of the other nine putative dapA genes is yet to be determined. Here, we demonstrate using bioinformatics that the product of the dapA5 gene (DapA5) possesses all the catalytic residues canonical to 2-keto-3-deoxygluconate (KDG) aldolase, which is a class I aldolase involved in glucose metabolism. We therefore expressed, purified, and characterized recombinant DapA5 using mass spectrometry, circular dichroism spectroscopy, analytical ultracentrifugation, and enzyme kinetics. The results show that DapA5 (1) adopts an α/ß structure consistent with the TIM-barrel fold of KDG aldolases, (2) possesses KDG aldolase enzyme activity, and (3) exists as a tight dimer in solution. This study shows for the first time that dapA5 from A. tumefaciens encodes a functional dimeric KDG aldolase.


Assuntos
Agrobacterium tumefaciens/enzimologia , Aldeído Liases/química , Aldeído Liases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Tumores de Planta/microbiologia , Multimerização Proteica , Ultracentrifugação
3.
Structure ; 24(8): 1282-1291, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27427481

RESUMO

Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS.


Assuntos
Escherichia coli/enzimologia , Retroalimentação Fisiológica , Hidroliases/química , Legionella pneumophila/enzimologia , Lisina/química , Streptococcus pneumoniae/enzimologia , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Legionella pneumophila/genética , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/genética , Especificidade por Substrato
4.
Methods Enzymol ; 562: 205-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412653

RESUMO

Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.


Assuntos
Proteínas de Bactérias/química , Hidroliases/química , Proteínas de Plantas/química , Proteínas de Bactérias/isolamento & purificação , Evolução Molecular , Hidroliases/isolamento & purificação , Cinética , Simulação de Dinâmica Molecular , Proteínas de Plantas/isolamento & purificação , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Espalhamento a Baixo Ângulo , Ultracentrifugação , Difração de Raios X
5.
Artigo em Inglês | MEDLINE | ID: mdl-23832194

RESUMO

Crystallization of macromolecules is famously difficult. By knowing what has worked for others, researchers can ease the process, both in the case where the protein has already been crystallized and in the situation where more general guidelines are needed. The 264 crystallization communications published in Acta Crystallographica Section F in 2012 have been reviewed, and from this analysis some information about trends in crystallization has been gleaned. More importantly, it was found that there are several ways in which the utility of these communications could be increased: to make each individual paper a more complete crystallization record; and to provide a means for taking a snapshot of what the current `best practices' are in the field.


Assuntos
Cristalografia por Raios X , Substâncias Macromoleculares/química , Publicações Periódicas como Assunto/normas , Editoração/estatística & dados numéricos , Cristalização , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-23385768

RESUMO

High-throughput imaging of protein crystallization experiments with ultraviolet (UV) light has recently become commercially available and can enable crystallographers to differentiate between crystals of protein and those of salt, as the visualization of protein crystals is based on intrinsic tryptophan fluorescence. Unfortunately, UV imaging is not a panacea, as some protein crystals will not fluoresce under UV excitation and some salt crystals are UV-fluorescently active. As a new technology, there is little experience within the general community on how to use this technology effectively and what caveats to look out for. Here, an attempt is made to identify some of the common problems that may arise using UV-imaging technology by examining test proteins, common crystallization reagents and a range of proteins by assessing their UV-Vis absorbance spectra. Some pointers are offered as to which systems may not be appropriate for this methodology.


Assuntos
Proteínas/química , Espectrofotometria Ultravioleta/métodos , Raios Ultravioleta , Soluções Tampão , Cristalização , DNA/metabolismo , Fluorescência , Laboratórios , Proteínas/metabolismo , Triptofano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...