Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cochrane Database Syst Rev ; 10: CD005951, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870112

RESUMO

BACKGROUND: Outcome after acute spontaneous (non-traumatic) intracerebral haemorrhage (ICH) is influenced by haematoma volume. ICH expansion occurs in about 20% of people with acute ICH. Early haemostatic therapy might improve outcome by limiting ICH expansion. This is an update of a Cochrane Review first published in 2006, and last updated in 2018. OBJECTIVES: To examine 1. the effects of individual classes of haemostatic therapies, compared with placebo or open control, in adults with acute spontaneous ICH, and 2. the effects of each class of haemostatic therapy according to the use and type of antithrombotic drug before ICH onset. SEARCH METHODS: We searched the Cochrane Stroke Trials Register, CENTRAL (2022, Issue 8), MEDLINE Ovid, and Embase Ovid on 12 September 2022. To identify further published, ongoing, and unpublished randomised controlled trials (RCTs), we scanned bibliographies of relevant articles and searched international registers of RCTs in September 2022. SELECTION CRITERIA: We included RCTs of any haemostatic intervention (i.e. procoagulant treatments such as clotting factor concentrates, antifibrinolytic drugs, platelet transfusion, or agents to reverse the action of antithrombotic drugs) for acute spontaneous ICH, compared with placebo, open control, or an active comparator. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcome was death/dependence (modified Rankin Scale (mRS) 4 to 6) by day 90. Secondary outcomes were ICH expansion on brain imaging after 24 hours, all serious adverse events, thromboembolic adverse events, death from any cause, quality of life, mood, cognitive function, Barthel Index score, and death or dependence measured on the Extended Glasgow Outcome Scale by day 90. MAIN RESULTS: We included 20 RCTs involving 4652 participants: nine RCTs of recombinant activated factor VII (rFVIIa) versus placebo/open control (1549 participants), eight RCTs of antifibrinolytic drugs versus placebo/open control (2866 participants), one RCT of platelet transfusion versus open control (190 participants), and two RCTs of prothrombin complex concentrates (PCC) versus fresh frozen plasma (FFP) (47 participants). Four (20%) RCTs were at low risk of bias in all criteria. For rFVIIa versus placebo/open control for spontaneous ICH with or without surgery there was little to no difference in death/dependence by day 90 (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.74 to 1.05; 7 RCTs, 1454 participants; low-certainty evidence). We found little to no difference in ICH expansion between groups (RR 0.81, 95% CI 0.56 to 1.16; 4 RCTs, 220 participants; low-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 0.81, 95% CI 0.30 to 2.22; 2 RCTs, 87 participants; very low-certainty evidence; death from any cause: RR 0.78, 95% CI 0.56 to 1.08; 8 RCTs, 1544 participants; moderate-certainty evidence). For antifibrinolytic drugs versus placebo/open control for spontaneous ICH, there was no difference in death/dependence by day 90 (RR 1.00, 95% CI 0.93 to 1.07; 5 RCTs, 2683 participants; high-certainty evidence). We found a slight reduction in ICH expansion with antifibrinolytic drugs for spontaneous ICH compared to placebo/open control (RR 0.86, 95% CI 0.76 to 0.96; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.02, 95% CI 0.75 to 1.39; 4 RCTs, 2599 participants; high-certainty evidence; death from any cause: RR 1.02, 95% CI 0.89 to 1.18; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in quality of life, mood, or cognitive function (quality of life: mean difference (MD) 0, 95% CI -0.03 to 0.03; 2 RCTs, 2349 participants; mood: MD 0.30, 95% CI -1.98 to 2.57; 2 RCTs, 2349 participants; cognitive function: MD -0.37, 95% CI -1.40 to 0.66; 1 RCTs, 2325 participants; all high-certainty evidence). Platelet transfusion likely increases death/dependence by day 90 compared to open control for antiplatelet-associated ICH (RR 1.29, 95% CI 1.04 to 1.61; 1 RCT, 190 participants; moderate-certainty evidence). We found little to no difference in ICH expansion between groups (RR 1.32, 95% CI 0.91 to 1.92; 1 RCT, 153 participants; moderate-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.46, 95% CI 0.98 to 2.16; 1 RCT, 190 participants; death from any cause: RR 1.42, 95% CI 0.88 to 2.28; 1 RCT, 190 participants; both moderate-certainty evidence). For PCC versus FFP for anticoagulant-associated ICH, the evidence was very uncertain about the effect on death/dependence by day 90, ICH expansion, all serious adverse events, and death from any cause between groups (death/dependence by day 90: RR 1.21, 95% CI 0.76 to 1.90; 1 RCT, 37 participants; ICH expansion: RR 0.54, 95% CI 0.23 to 1.22; 1 RCT, 36 participants; all serious adverse events: RR 0.27, 95% CI 0.02 to 3.74; 1 RCT, 5 participants; death from any cause: RR 0.49, 95% CI 0.16 to 1.56; 2 RCTs, 42 participants; all very low-certainty evidence). AUTHORS' CONCLUSIONS: In this updated Cochrane Review including 20 RCTs involving 4652 participants, rFVIIa likely results in little to no difference in reducing death or dependence after spontaneous ICH with or without surgery; antifibrinolytic drugs result in little to no difference in reducing death or dependence after spontaneous ICH, but result in a slight reduction in ICH expansion within 24 hours; platelet transfusion likely increases death or dependence after antiplatelet-associated ICH; and the evidence is very uncertain about the effect of PCC compared to FFP on death or dependence after anticoagulant-associated ICH. Thirteen RCTs are ongoing and are likely to increase the certainty of the estimates of treatment effect.


Assuntos
Antifibrinolíticos , Hemostáticos , Acidente Vascular Cerebral , Adulto , Humanos , Hemostáticos/uso terapêutico , Antifibrinolíticos/uso terapêutico , Fibrinolíticos/uso terapêutico , Hemorragia Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Anticoagulantes/uso terapêutico
3.
Cochrane Database Syst Rev ; 12: CD010801, 2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578732

RESUMO

BACKGROUND: Red blood cell (RBC) transfusion is a common treatment for anaemia in many conditions. The safety and efficacy of transfusing RBC units that have been stored for different durations before a transfusion is a current concern. The duration of storage for a RBC unit can be up to 42 days. If evidence from randomised controlled trials (RCT) were to indicate that clinical outcomes are affected by storage duration, the implications for inventory management and clinical practice would be significant. OBJECTIVES: To assess the effects of using red blood cells (RBCs) stored for a shorter versus a longer duration, or versus RBCs stored for standard practice duration, in people requiring a RBC transfusion. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, PubMed (for epublications), LILACS, Transfusion Evidence Library, Web of Science CPCI-S and four international clinical trial registries on 20 November 2017. SELECTION CRITERIA: We included RCTs that compared transfusion of RBCs of shorter versus longer storage duration, or versus standard practice storage duration. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. MAIN RESULTS: We included 22 trials (42,835 participants) in this review.The GRADE quality of evidence ranged from very low to moderate for our primary outcome of in-hospital and short-term mortality reported at different time points.Transfusion of RBCs of shorter versus longer storage duration Eleven trials (2249 participants) compared transfusion of RBCs of shorter versus longer storage duration. Two trials enrolled low birth weight neonates, two enrolled children with severe anaemia secondary to malaria or sickle cell disease, and eight enrolled adults across a range of clinical settings (intensive care, cardiac surgery, major elective surgery, hospitalised in-patients, haematology outpatients). We judged only two trials to be at low risk of bias across all domains; most trials had an unclear risk for multiple domains.Transfusion of RBCs of shorter versus longer storage duration probably leads to little or no difference in mortality at seven-day follow-up (risk ratio (RR) 1.42, 95% confidence interval (CI) 0.66 to 3.06; 1 trial, 3098 participants; moderate quality evidence) or 30-day follow-up (RR 0.85, 95%CI 0.50 to 1.45; 2 trials, 1121 participants; moderate quality evidence) in adults undergoing major elective cardiac or non-cardiac surgery.For neonates, no studies reported on the primary outcome of in-hospital or short-term mortality. At 40 weeks gestational age, the effect of RBCs of shorter versus longer storage duration on the risk of death was uncertain, as the quality of evidence is very low (RR 0.90, 95% CI 0.41 to 1.85; 1 trial, 52 participants).The effect of RBCs of shorter versus longer storage duration on the risk of death in children with severe anaemia was also uncertain within 24 hours of transfusion (RR 1.50, 95% CI 0.43 to 5.25; 2 trials, 364 participants; very low quality evidence), or at 30-day follow-up (RR 1.40, 95% CI 0.45 to 4.31; 1 trial, 290 participants; low quality evidence).Only one trial, in children with severe anaemia (290 participants), reported adverse transfusion reactions. Only one child in each arm experienced an adverse reaction within 24 hours of transfusion.Transfusion of RBCs of shorter versus standard practice storage duration Eleven trials (40,588 participants) compared transfusion of RBCs of shorter versus standard practice storage duration. Three trials enrolled critically ill term neonates; two of these enrolled very low birth weight neonates. There were no trials in children. Eight trials enrolled critically ill and non-critically ill adults, with most being hospitalised. We judged four trials to be at low risk of bias across all domains with the others having an unclear risk of bias across multiple domains.Transfusion of RBCs of shorter versus standard practice storage duration probably leads to little or no difference in adult in-hospital mortality (RR 1.05, 95% CI 0.97 to 1.14; 4 trials, 25,704 participants; moderate quality evidence), ICU mortality (RR 1.06, 95% CI 0.98 to 1.15; 3 trials, 13,066 participants; moderate quality evidence), or 30-day mortality (RR 1.04, 95% CI 0.96 to 1.13; 4 trials, 7510 participants;moderate quality evidence).Two of the three trials that enrolled neonates reported that there were no adverse transfusion reactions. One trial reported an isolated case of cytomegalovirus infection in participants assigned to the standard practice storage duration group. Two trials in critically ill adults reported data on transfusion reactions: one observed no difference in acute transfusion reactions between arms (RR 0.67, 95% CI 0.19 to 2.36, 2413 participants), but the other observed more febrile nonhaemolytic reactions in the shorter storage duration arm (RR 1.48, 95% CI 1.13 to 1.95, 4919 participants).Trial sequential analysis showed that we may now have sufficient evidence to reject a 5% relative risk increase or decrease of death within 30 days when transfusing RBCs of shorter versus longer storage duration across all patient groups. AUTHORS' CONCLUSIONS: The effect of storage duration on clinically important outcomes has now been investigated in large, high quality RCTs, predominantly in adults. There appears to be no evidence of an effect on mortality that is related to length of storage of transfused RBCs. However, the quality of evidence in neonates and children is low. The current practice in blood banks of using the oldest available RBCs can be continued safely. Additional RCTs are not required, but research using alternative study designs, should focus on particular subgroups (e.g. those requiring multiple RBC units) and on factors affecting RBC quality.


Assuntos
Anemia/terapia , Preservação de Sangue , Transfusão de Eritrócitos , Eritrócitos , Adulto , Anemia/etiologia , Anemia/mortalidade , Anemia Falciforme/complicações , Preservação de Sangue/efeitos adversos , Preservação de Sangue/mortalidade , Segurança do Sangue , Criança , Transfusão de Eritrócitos/efeitos adversos , Transfusão de Eritrócitos/mortalidade , Guias como Assunto , Mortalidade Hospitalar , Humanos , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Malária/complicações , Ensaios Clínicos Controlados Aleatórios como Assunto , Tamanho da Amostra , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...