Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37764063

RESUMO

Bivalve molluscan shellfish have been consumed for centuries. Being filter feeders, they may bioaccumulate some microorganisms present in coastal water, either naturally or through the discharge of human or animal sewage. Despite regulations set up to avoid microbiological contamination in shellfish, human outbreaks still occur. After providing an overview showing their implication in disease, this review aims to highlight the diversity of the bacteria or enteric viruses detected in shellfish species, including emerging pathogens. After a critical discussion of the available methods and their limitations, we address the interest of technological developments using genomics to anticipate the emergence of pathogens. In the coming years, further research needs to be performed and methods need to be developed in order to design the future of surveillance and to help risk assessment studies, with the ultimate objective of protecting consumers and enhancing the microbial safety of bivalve molluscan shellfish as a healthy food.

2.
Microbiol Spectr ; 11(4): e0184423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395665

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.


Assuntos
COVID-19 , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , COVID-19/epidemiologia , Águas Residuárias , SARS-CoV-2 , Solo
3.
Mar Drugs ; 21(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367667

RESUMO

Noroviruses, the major cause of acute viral gastroenteritis, are known to bind to histo-blood group antigens (HBGAs), including ABH groups and Lewis-type epitopes, which decorate the surface of erythrocytes and epithelial cells of their host tissues. The biosynthesis of these antigens is controlled by several glycosyltransferases, the distribution and expression of which varies between tissues and individuals. The use of HBGAs as ligands by viruses is not limited to humans, as many animal species, including oysters, which synthesize similar glycan epitopes that act as a gateway for viruses, become vectors for viral infection in humans. Here, we show that different oyster species synthesize a wide range of N-glycans that share histo-blood A-antigens but differ in the expression of other terminal antigens and in their modification by O-methyl groups. In particular, we show that the N-glycans isolated from Crassostrea gigas and Ostrea edulis exhibit exquisite methylation patterns in their terminal N-acetylgalactosamine and fucose residues in terms of position and number, adding another layer of complexity to the post-translational glycosylation modifications of glycoproteins. Furthermore, modeling of the interactions between norovirus capsid proteins and carbohydrate ligands strongly suggests that methylation has the potential to fine-tune the recognition events of oysters by virus particles.


Assuntos
Antígenos de Grupos Sanguíneos , Crassostrea , Norovirus , Ostrea , Humanos , Animais , Crassostrea/metabolismo , Ostrea/metabolismo , Metilação , Ligantes , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Epitopos/metabolismo
4.
Front Microbiol ; 14: 1161674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180249

RESUMO

The impact of human sewage on environmental and food contamination constitutes an important safety issue. Indeed, human sewage reflects the microbiome of the local population, and a variety of human viruses can be detected in wastewater samples. Being able to describe the diversity of viruses present in sewage will provide information on the health of the surrounding population health and will help to prevent further transmission. Metagenomic developments, allowing the description of all the different genomes present in a sample, are very promising tools for virome analysis. However, looking for human enteric viruses with short RNA genomes which are present at low concentrations is challenging. In this study we demonstrate the benefits of performing technical replicates to improve viral identification by increasing contig length, and the set-up of quality criteria to increase confidence in results. Our approach was able to effectively identify some virus sequences and successfully describe the viral diversity. The method yielded full genomes either for norovirus, enterovirus and rotavirus, even if, for these segmented genomes, combining genes remain a difficult issue. Developing reliable viromic methods is important as wastewater sample analysis provides an important tool to prevent further virus transmission by raising alerts in case of viral outbreaks or emergence.

5.
J Virol ; 97(4): e0038323, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039654

RESUMO

Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the Caliciviridae family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs in vitro were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection. In this study, we demonstrate replication of two HuSaV strains in human intestinal enteroids (HIEs) known to support the replication of HuNoV and other human enteric viruses. HuSaVs replicated in differentiated HIEs originating from jejunum, duodenum and ileum, but not from the colon, and bile acids were required. Between 2h and 3 to 6 days postinfection, viral RNA levels increased up from 0.5 to 1.8 log10-fold. Importantly, HuSaVs were able to replicate in HIEs independent of their secretor status and histo-blood group antigen expression. The HIE model supports HuSaV replication and allows a better understanding of host-pathogen mechanisms such as cellular tropism and mechanisms of viral replication. IMPORTANCE Human sapoviruses (HuSaVs) are a frequent but overlooked cause of acute gastroenteritis, especially in children. Little is known about this pathogen, whose successful in vitro cultivation was reported only recently, in a cancer cell-derived line. Here, we assessed the replication of HuSaV in human intestinal enteroids (HIEs), which are nontransformed cultures originally derived from human intestinal stem cells that can be grown in vitro and are known to allow the replication of other enteric viruses. Successful infection of HIEs with two strains belonging to different genotypes of the virus allowed discovery that the tropism of these HuSaVs is restricted to the small intestine, does not occur in the colon, and replication requires bile acid but is independent of the expression of histo-blood group antigens. Thus, HIEs represent a physiologically relevant model to further investigate HuSaV biology and a suitable platform for the future development of vaccines and antivirals.


Assuntos
Infecções por Caliciviridae , Técnicas de Cultura , Sapovirus , Replicação Viral , Humanos , Ácidos e Sais Biliares/farmacologia , Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Intestino Delgado/virologia , Sapovirus/crescimento & desenvolvimento , Sapovirus/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Técnicas de Cultura/métodos , Interações entre Hospedeiro e Microrganismos , Meios de Cultura/química , Linhagem Celular Tumoral , Diferenciação Celular
6.
Emerg Infect Dis ; 28(7): 1475-1479, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731177

RESUMO

Little data on the persistence of human norovirus infectivity are available to predict its transmissibility. Using human intestinal enteroids, we demonstrate that 2 human norovirus strains can remain infectious for several weeks in seawater. Such experiments can improve understanding of factors associated with norovirus survival in coastal waters and shellfish.


Assuntos
Infecções por Caliciviridae , Doenças Transmissíveis , Norovirus , Humanos , Norovirus/genética , Água do Mar , Frutos do Mar
7.
Front Microbiol ; 13: 889811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756003

RESUMO

Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.

8.
Sci Total Environ ; 833: 155139, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35405243

RESUMO

Recent studies have shown that passive sampling is a promising tool for SARS-CoV-2 detection for wastewater-based epidemiology (WBE) application. We have previously developed passive sampling of viruses using polymer membranes in seawater. Even though SARS-CoV-2 was not detected yet in seawater, passive sampling could be optimized for future application in coastal areas close to wastewater treatment plant (WWTP). The aim of this study was to optimize passive sampling of SARS-CoV-2 in sewage and seawater by selecting a suitable membrane, to determine whether the quantities of virus increase over time, and then to determine if passive sampling and traditional sampling are correlated when conducted in a wastewater treatment plant. Nylon and Zetapor allowed the detection of heat inactivated SARS-CoV-2 and of the Porcine Epidemic Diarrhea Virus (PEDV), a coronavirus surrogate, in wastewater and seawater spiked with these 2 viruses, showing an increase in detection between 4 h and 24 h of immersion and significantly higher recoveries of both viruses with nylon in seawater (15%) compared to wastewater (4%). On wastewater samples, both membranes detected the virus, the recovery rate was of about 3% for freshly collected samples, and no significant difference was found between SARS-CoV-2 genome concentration on Zetapor and that in water. In sewage spiked seawater, similar concentrations of genome were found on both membranes, with a mean recovery rate of 16% and 11% respectively for nylon and Zetapor. A 3-weeks monitoring with passive sampler allowed the detection of viruses in the influent of a WWTP with a frequency of 100% and 76% for SARS-CoV-2 and norovirus GII respectively. Passive and traditional sampling gave the same evolution of the SARS-CoV-2 concentration over time. All these results confirmed the interest of passive sampling for virus detection and its potential application for monitoring in the wastewater system for targeted public health actions.


Assuntos
COVID-19 , Vírus , Animais , Nylons , SARS-CoV-2 , Água do Mar , Esgotos , Suínos , Águas Residuárias
9.
Front Microbiol ; 12: 770385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917052

RESUMO

Many recent pandemics have been recognized as zoonotic viral diseases. While their origins remain frequently unknown, environmental contamination may play an important role in emergence. Thus, being able to describe the viral diversity in environmental samples contributes to understand the key issues in zoonotic transmission. This work describes the use of a metagenomic approach to assess the diversity of eukaryotic RNA viruses in river clams and identify sequences from human or potentially zoonotic viruses. Clam samples collected over 2years were first screened for the presence of norovirus to verify human contamination. Selected samples were analyzed using metagenomics, including a capture of sequences from viral families infecting vertebrates (VirCapSeq-VERT) before Illumina NovaSeq sequencing. The bioinformatics analysis included pooling of data from triplicates, quality filtering, elimination of bacterial and host sequences, and a deduplication step before de novo assembly. After taxonomic assignment, the viral fraction represented 0.8-15% of reads with most sequences (68-87%) remaining un-assigned. Yet, several mammalian RNA viruses were identified. Contigs identified as belonging to the Astroviridae were the most abundant, with some nearly complete genomes of bastrovirus identified. Picobirnaviridae sequences were related to strains infecting bats, and few others to strains infecting humans or other hosts. Hepeviridae sequences were mostly related to strains detected in sponge samples but also strains from swine samples. For Caliciviridae and Picornaviridae, most of identified sequences were related to strains infecting bats, with few sequences close to human norovirus, picornavirus, and genogroup V hepatitis A virus. Despite a need to improve the sensitivity of our method, this study describes a large diversity of RNA virus sequences from clam samples. To describe all viral contaminants in this type of food, and being able to identify the host infected by viral sequences detected, may help to understand some zoonotic transmission events and alert health authorities of possible emergence.

10.
Sci Total Environ ; 778: 146270, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714825

RESUMO

The emergence and worldwide spread of SARS-CoV-2 raises new concerns and challenges regarding possible environmental contamination by this virus through spillover of human sewage, where it has been detected. The coastal environment, under increasing anthropogenic pressure, is subjected to contamination by a large number of human viruses from sewage, most of them being non-enveloped viruses like norovirus. When reaching coastal waters, they can be bio-accumulated by filter-feeding shellfish species such as oysters. Methods to detect this viral contamination were set up for the detection of non-enveloped enteric viruses, and may need optimization to accommodate enveloped viruses like coronaviruses (CoV). Here, we aimed at assessing methods for the detection of CoV, including SARS-CoV-2, in the coastal environment and testing the possibility that SARS-CoV-2 can contaminate oysters, to monitor the contamination of French shores by SARS-CoV-2 using both seawater and shellfish. Using the porcine epidemic diarrhea virus (PEDV), a CoV, as surrogate for SARS-CoV-2, and Tulane virus, as surrogate for non-enveloped viruses such as norovirus, we assessed and selected methods to detect CoV in seawater and shellfish. Seawater-based methods showed variable and low yields for PEDV. In shellfish, the current norm for norovirus detection was applicable to CoV detection. Both PEDV and heat-inactivated SARS-CoV-2 could contaminate oysters in laboratory settings, with a lower efficiency than a calicivirus used as control. Finally, we applied our methods to seawater and shellfish samples collected from April to August 2020 in France, where we could detect the presence of human norovirus, a marker of human fecal contamination, but not SARS-CoV-2. Together, our results validate methods for the detection of CoV in the coastal environment, including the use of shellfish as sentinels of the microbial quality of their environment, and suggest that SARS-CoV-2 did not contaminate the French shores during the summer season.


Assuntos
COVID-19 , Norovirus , Animais , França , Humanos , SARS-CoV-2 , Frutos do Mar , Suínos
11.
Viruses ; 12(9)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899445

RESUMO

Human noroviruses (NoV) cause epidemics of acute gastroenteritis (AGE) worldwide and can be transmitted through consumption of contaminated foods. Fresh products such as shellfish can be contaminated by human sewage during production, which results in the presence of multiple virus strains, at very low concentrations. Here, we tested a targeted metagenomics approach by deep-sequencing PCR amplicons of the capsid (VP1) and polymerase (RdRp) viral genes, on a set of artificial samples and on shellfish samples associated to AGE outbreaks, to evaluate its advantages and limitations in the identification of strains from the NoV genogroup (G) II. Using artificial samples, the method allowed the sequencing of most strains, but not all, and displayed variability between replicates especially with lower viral concentrations. Using shellfish samples, targeted metagenomics was compared to Sanger-sequencing of cloned amplicons and was able to identify a higher diversity of NoV GII and GIV strains. It allowed phylogenetic analyses of VP1 sequences and the identification, in most samples, of GII.17[P17] strains, also identified in related clinical samples. Despite several limitations, combining RdRp- and VP1-targeted metagenomics is a sensitive approach allowing the study NoV diversity in low-contaminated foods and the identification of NoV strains implicated in outbreaks.


Assuntos
Gastroenterite/virologia , Norovirus/isolamento & purificação , Frutos do Mar/virologia , Surtos de Doenças , Contaminação de Alimentos/análise , França/epidemiologia , Gastroenterite/epidemiologia , Humanos , Metagenômica , Norovirus/classificação , Norovirus/genética , Filogenia
12.
Food Environ Virol ; 12(3): 274-277, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32594312

RESUMO

Shellfish constitute an important protein source but may be contaminated by viruses from various origins. A study performed on clams collected in Cameroon showed a high prevalence of norovirus and hepatitis A virus. After sequencing, the hepatitis A virus showed similarities with the genotype V simian strains.


Assuntos
Bivalves/virologia , Contaminação de Alimentos/análise , Vírus da Hepatite A/isolamento & purificação , Norovirus/isolamento & purificação , Animais , Camarões , Genótipo , Vírus da Hepatite A/classificação , Vírus da Hepatite A/genética , Norovirus/classificação , Norovirus/genética , Frutos do Mar/virologia
13.
Int J Food Microbiol ; 323: 108588, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32200157

RESUMO

Human virus transmission through food consumption has been identified since many years and the international trade increases the risk of dissemination of viral pathogens. The development of metagenomic approach holds many promises for the surveillance of viruses in food and water. This work aimed to analyze norovirus diversity and to evaluate strain-dependent accumulation patterns in three oyster types by using a metagenomic approach. Different hexamer sets to prime cDNA were evaluated before capture-based approach to enhance virus reads recovery during deep sequencing. The study includes the use of technical replicates of artificially contaminated oysters and the analysis of multiple negatives controls. Results showed a clear impact of the hexamer set used for cDNA synthesis. A set of In-house designed (I-HD) hexamers, selected to lower mollusk amplification, gave promising results in terms of viral reads abundancy. However, the best correlation between CT values, thus concentrations, and number of reads was observed using random hexamers. Random hexamers also provided the highest numbers of reads and allowed the identification of sequence of different human enteric viruses. Regarding human norovirus, different genogroups and genotypes were identified among contigs longer than 500 bp. Two full genomes and six sequences longer than 3600 bases were obtained allowing a precise strain identification. The use of technical triplicates was found valuable to increase the chances to sequence viral strains present at low concentrations. Analyzing viral contamination in shellfish samples is quite challenging, however this work demonstrates that the recovery of full genome or long contigs, allowing clear identification of viral strains is possible.


Assuntos
Variação Genética , Metagenômica , Norovirus/genética , Ostreidae/virologia , Animais , Genoma Viral/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala
14.
One Health Outlook ; 2: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33829135

RESUMO

Foodborne viral infections rank among the top 5 causes of disease, with noroviruses and hepatitis A causing the greatest burden globally. Contamination of foods by infected food handlers or through environmental pollution are the main sources of foodborne illness, with a lesser role for consumption of products from infected animals. Viral partial genomic sequencing has been used for more than two decades to track foodborne outbreaks and whole genome or metagenomics next-generation-sequencing (NGS) are new additions to the toolbox of food microbiology laboratories. We discuss developments in the field of targeted and metagenomic NGS, with an emphasis on application in food virology, the challenges and possible solutions towards future routine application.

15.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490595

RESUMO

Along with CD4+ T lymphocytes, macrophages are a major cellular source of HIV-1 replication and a potential viral reservoir. Following entry and reverse transcription in macrophages, cloaking of the viral cDNA by the HIV-1 capsid limits its cytosolic detection, enabling efficient replication. However, whether incoming HIV-1 particles are sensed by macrophages prior to reverse transcription remains unclear. Here, we show that HIV-1 triggers a broad expression of interferon (IFN)-stimulated genes (ISG) in monocyte-derived macrophages within a few hours after infection. This response does not require viral reverse transcription or the presence of HIV-1 RNA within particles, but viral fusion is essential. This response is elicited by viruses carrying different envelope proteins and thus different receptors to proceed for viral entry. Expression of ISG in response to viral entry requires TBK1 activity and type I IFNs signaling. Remarkably, the ISG response is transient but affects subsequent viral spread. Together, our results shed light on an early step of HIV-1 sensing by macrophages at the level of entry, which confers an early protection through type I IFN signaling and has potential implications in controlling the infection.IMPORTANCE HIV infection is restricted to T lymphocytes and macrophages. HIV-1-infected macrophages are found in many tissues of infected patients, even under antiretroviral therapy, and are considered a viral reservoir. How HIV-1 is detected and what type of responses are elicited upon sensing remain in great part elusive. The kinetics and localization of the production of cytokines such as interferons in response to HIV is of critical importance to understanding how the infection and the immune response are established. Our study provides evidence that macrophages can detect HIV-1 as soon as it enters the cell. Interestingly, this sensing is independent of the presence of viral nucleic acids within the particles but requires their fusion with the macrophages. This triggers a low interferon response, which activates an antiviral program protecting cells against further viral challenge and thus potentially limiting the spread of the infection.


Assuntos
HIV-1/imunologia , HIV-1/fisiologia , Imunidade Inata , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Internalização do Vírus , Células Cultivadas , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo
16.
Genome Announc ; 5(9)2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28254965

RESUMO

Some arboviruses threaten human global health with potentially explosive emergence. Analysis of whole-genome sequences of decades-old isolates might contribute to the understanding of the complex dynamics which drive their circulation and emergence. Here, we report the whole-genome sequences of two Chikungunya viruses isolated in the Central African Republic in the 1970s and 1980s.

17.
Vet Res ; 47: 9, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743565

RESUMO

Sleeping disease in rainbow trout is characterized by an abnormal swimming behaviour of the fish which stay on their side at the bottom of the tanks. This sign is due to extensive necrosis and atrophy of red skeletal muscle induced by the sleeping disease virus (SDV), also called salmonid alphavirus 2. Infections of humans with arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), are global causes of debilitating musculoskeletal diseases. The mechanisms by which the virus causes these pathologies are poorly understood due to the restrictive availability of animal models capable of reproducing the full spectrum of the disease. Nevertheless, it has been shown that CHIKV exhibits a particular tropism for muscle stem cells also known as satellite cells. Thus, SDV and its host constitute a relevant model to study in details the virus-induced muscle atrophy, the pathophysiological consequences of the infection of a particular cell-type in the skeletal muscle, and the regeneration of the muscle tissue in survivors together with the possible virus persistence. To study a putative SDV tropism for that particular cell type, we established an in vivo and ex vivo rainbow trout model of SDV-induced atrophy of the skeletal muscle. This experimental model allows reproducing the full panel of clinical signs observed during a natural infection since the transmission of the virus is arthropod-borne independent. The virus tropism in the muscle tissue was studied by immunohistochemistry together with the kinetics of the muscle atrophy, and the muscle regeneration post-infection was observed. In parallel, an ex vivo model of SDV infection of rainbow trout satellite cells was developed and virus replication and persistence in that particular cell type was followed up to 73 days post-infection. These results constitute the first observation of a specific SDV tropism for the muscle satellite cells.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/classificação , Doenças dos Peixes/virologia , Oncorhynchus mykiss , Células Satélites de Músculo Esquelético/virologia , Infecções por Alphavirus/virologia , Animais , Músculo Esquelético/patologia , Atrofia Muscular/veterinária , Atrofia Muscular/virologia , Regeneração
18.
Proc Natl Acad Sci U S A ; 112(25): E3265-73, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056317

RESUMO

HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.


Assuntos
Trifosfato de Adenosina/fisiologia , Reservatórios de Doenças , HIV-1/fisiologia , Macrófagos/virologia , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos , Imipramina/farmacologia , Ligação Proteica , Receptores Purinérgicos P2X7/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/fisiologia
19.
Infect Genet Evol ; 33: 25-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911440

RESUMO

Chikungunya virus (CHIKV) is an alphavirus transmitted by the bite of mosquito vectors. Over the past 10 years, the virus has gained mutations that enhance its transmissibility by the Aedes albopictus vector, resulting in massive outbreaks in the Indian Ocean, Asia and Central Africa. Recent introduction of competent A. albopictus vectors into the Central African Republic (CAR) pose a threat of a Chikungunya fever (CHIKF) epidemic in this region. We undertook this study to assess the genetic diversity and background of CHIKV strains isolated in the CAR between 1975 and 1984 and also to estimate the ability of local strains to adapt to A. albopictus. Our results suggest that, local CHIKV strains have a genetic background compatible with quick adaptation to A. albopictus, as previously observed in other Central African countries. Intense surveillance of the human and vector populations is necessary to prevent or anticipate the emergence of a massive CHIKF epidemic in the CAR.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Variação Genética , Animais , República Centro-Africana/epidemiologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Geografia , Humanos , Insetos Vetores , Filogenia , Vigilância da População , Análise de Sequência de DNA , Proteínas Virais/genética
20.
Front Microbiol ; 5: 312, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009540

RESUMO

HIV-1 is an RNA enveloped virus that preferentially infects CD4(+) T lymphocytes and also macrophages. In CD4(+) T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4(+) T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4(+) T cells and macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...