Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38788899

RESUMO

BACKGROUND & AIMS: There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS: Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induces a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS: We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.

2.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 781-794, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503560

RESUMO

BACKGROUND: Previously, we demonstrated that Spp1-/- mice exhibit a greater susceptibility to alcohol-induced liver injury than wild-type (WT) mice. Notably, alcohol triggers the expression of osteopontin (encoded by SPP1) in hepatocytes. However, the specific role of hepatocyte-derived SPP1 in either mitigating or exacerbating alcohol-associated liver disease (AALD) has yet to be elucidated. We hypothesized that hepatocyte-derived SPP1 plays a role in AALD by modulating the regulation of steatosis. METHODS: We analyzed hepatic SPP1 expression using four publicly available datasets from patients with alcoholic hepatitis (AH). Additionally, we examined SPP1 expression in the livers of WT mice subjected to either a control or ethanol Lieber-DeCarli (LDC) diet for 6 weeks. We compared the relationship between SPP1 expression and significantly dysregulated genes in AH with controls using correlation and enrichment analyses. To investigate the specific impact of hepatocyte-derived SPP1, we generated hepatocyte-specific Spp1 knock-out (Spp1ΔHep) mice and subjected them to either a control or ethanol Lieber-DeCarli diet for 6 weeks. RESULTS: Alcohol induced hepatic SPP1 expression in both humans and mice. Our analysis, focusing on genes correlated with SPP1, revealed an enrichment of fatty acid oxidation (FAO) in three datasets, and peroxisome proliferator-activated receptor signaling in one dataset. Notably, FAO genes correlating with SPP1 were downregulated in patients with AH. Ethanol-fed WT mice exhibited higher serum-free fatty acids (FFAs), adipose tissue lipolysis, and hepatic fatty acid (FA) transporters. In contrast, ethanol-fed Spp1ΔHep mice displayed lower liver triglycerides, FFAs, and serum alanine transaminase and greater FAO gene expression than WT mice, indicating a protective effect against AALD. Primary hepatocytes from Spp1∆Hep mice exhibited heightened expression of genes encoding proteins involved in FAO. CONCLUSIONS: Alcohol induces the expression of SPP1 in hepatocytes, leading to impaired FAO and contributing to the development of AALD.

3.
J Hepatol ; 80(3): 482-494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989401

RESUMO

BACKGROUND & AIMS: High-mobility group box-1 (HMGB1) significantly increases and undergoes post-translational modifications (PTMs) in response to liver injury. Since oxidative stress plays a major role in liver fibrosis and induces PTMs in proteins, we hypothesized that redox-sensitive HMGB1 isoforms contribute to liver fibrosis progression and resolution. METHODS: We used ESI-LC-MS (electrospray ionization-liquid chromatography-mass spectrometry) to study PTMs of HMGB1 during fibrosis progression and resolution. Conditional knockout mice were used for functional analyses. RESULTS: We identified that disulfide ([O]) and sulfonated ([SO3]) HMGB1 increase during carbon tetrachloride-induced liver fibrosis progression, however, while [O] HMGB1 declines, [SO3] HMGB1 drops but remains, during fibrosis resolution. Conditional knockout of Hmgb1 revealed that production of [O] and [SO3] HMGB1 occurs mostly in hepatocytes. Co-injection of [O] HMGB1 worsens carbon tetrachloride-induced liver fibrosis more than co-injection of [H] HMGB1. Conversely, ablation of [O] Hmgb1 in hepatocytes reduces liver fibrosis. Moreover, ablation of the receptor for advanced-glycation end-products (Rage) reveals that the profibrogenic effect of [O] HMGB1 is mediated by RAGE signaling in hepatic stellate cells (HSCs). Notably, injection of [SO3] HMGB1 accelerates fibrosis resolution due to RAGE-dependent stimulation of HSC apoptosis. Importantly, gene signatures activated by redox-sensitive HMGB1 isoforms in mice, classify patients with fibrosis according to fibrosis and inflammation scores. CONCLUSION: Dynamic changes in hepatocyte-derived [O] and [SO3] HMGB1 signal through RAGE-dependent mechanisms on HSCs to drive their profibrogenic phenotype and fate, contributing to progression and resolution of liver fibrosis. IMPACT AND IMPLICATIONS: Since oxidative stress plays a major role in liver fibrosis and induces post-translational modifications of proteins, we hypothesized that redox-sensitive HMGB1 isoforms contribute to liver fibrosis progression and resolution. This study is significant because a rise in [H] HMGB1 could flag 'patient at risk', the presence of [O] HMGB1 could suggest 'disease in progress or active scarring', while the appearance of [SO3] HMGB1 could point at 'resolution under way'. The latter could be used as a readout for response to pharmacological intervention with anti-fibrotic agents.


Assuntos
Tetracloreto de Carbono , Proteína HMGB1 , Animais , Humanos , Camundongos , Tetracloreto de Carbono/toxicidade , Células Cultivadas , Cirrose Hepática/etiologia , Camundongos Knockout , Oxirredução , Isoformas de Proteínas , Receptor para Produtos Finais de Glicação Avançada/metabolismo
5.
Hepatol Commun ; 7(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055645

RESUMO

BACKGROUND: Liver cancer is increasing due to the rise in metabolic dysfunction-associated steatohepatitis (MASH). High-mobility group box-1 (HMGB1) is involved in the pathogenesis of chronic liver disease, but its role in MASH-associated liver cancer is unknown. We hypothesized that an increase in hepatocyte-derived HMGB1 in a mouse model of inactivation of PTEN that causes MASH could promote MASH-induced tumorigenesis. METHODS: We analyzed publicly available transcriptomics datasets, and to explore the effect of overexpressing HMGB1 in cancer progression, we injected 1.5-month-old Pten∆Hep mice with adeno-associated virus serotype-8 (AAV8) vectors to overexpress HMGB1-EGFP or EGFP, and sacrificed them at 3, 9 and 11 months of age. RESULTS: We found that HMGB1 mRNA increases in human MASH and MASH-induced hepatocellular carcinoma (MASH-HCC) compared to healthy livers. Male and female Pten∆Hep mice overexpressing HMGB1 showed accelerated liver tumor development at 9 and 11 months, respectively, with increased tumor size and volume, compared to control Pten∆Hep mice. Moreover, Pten∆Hep mice overexpressing HMGB1, had increased incidence of mixed HCC-intrahepatic cholangiocarcinoma (iCCA). All iCCAs were positive for nuclear YAP and SOX9. Male Pten∆Hep mice overexpressing HMGB1 showed increased cell proliferation and F4/80+ cells at 3 and 9 months. CONCLUSION: Overexpression of HMGB1 in hepatocytes accelerates liver tumorigenesis in Pten∆Hep mice, enhancing cell proliferation and F4/80+ cells to drive MASH-induced liver cancer.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Fígado Gorduroso , Proteína HMGB1 , Neoplasias Hepáticas , Animais , Feminino , Humanos , Lactente , Masculino , Camundongos , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Proteína HMGB1/genética , Neoplasias Hepáticas/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
6.
Gastroenterology ; 165(1): 201-217, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028770

RESUMO

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, hepatocyte ballooning degeneration, and fibrosis, all of which increase the risk of progression to end-stage liver disease. Osteopontin (OPN, SPP1) plays an important role in macrophage (MF) biology, but whether MF-derived OPN affects NASH progression is unknown. METHODS: We analyzed publicly available transcriptomic datasets from patients with NASH, and used mice with conditional overexpression or ablation of Spp1 in myeloid cells and liver MFs, and fed them a high-fat, fructose, and cholesterol diet mimicking the Western diet, to induce NASH. RESULTS: This study demonstrated that MFs with high expression of SPP1 are enriched in patients and mice with nonalcoholic fatty liver disease (NAFLD), and show metabolic but not pro-inflammatory properties. Conditional knockin of Spp1 in myeloid cells (Spp1KI Mye) or in hepatic macrophages (Spp1KI LvMF) conferred protection, whereas conditional knockout of Spp1 in myeloid cells (Spp1ΔMye) worsened NASH. The protective effect was mediated by induction of arginase-2 (ARG2), which enhanced fatty acid oxidation (FAO) in hepatocytes. Induction of ARG2 stemmed from enhanced production of oncostatin-M (OSM) in MFs from Spp1KI Mye mice. OSM activated STAT3 signaling, which upregulated ARG2. In addition to hepatic effects, Spp1KI Mye also protected through sex-specific extrahepatic mechanisms. CONCLUSION: MF-derived OPN protects from NASH, by upregulating OSM, which increases ARG2 through STAT3 signaling. Further, the ARG2-mediated increase in FAO reduces steatosis. Therefore, enhancing the OPN-OSM-ARG2 crosstalk between MFs and hepatocytes may be beneficial for patients with NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Osteopontina , Animais , Feminino , Masculino , Camundongos , Dieta Hiperlipídica , Dieta Ocidental , Modelos Animais de Doenças , Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteopontina/genética , Osteopontina/metabolismo
7.
Hepatology ; 78(3): 771-786, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37016762

RESUMO

BACKGROUND AND AIMS: Early allograft dysfunction (EAD) is a severe event leading to graft failure after liver transplant (LT). Extracellular high-mobility group box-1 (HMGB1) is a damage-associated molecular pattern that contributes to hepatic ischemia-reperfusion injury (IRI). However, the contribution of intracellular HMGB1 to LT graft injury remains elusive. We hypothesized that intracellular neutrophil-derived HMGB1 from recipients protects from post-LT EAD. APPROACH AND RESULTS: We generated mice with conditional ablation or overexpression of Hmgb1 in hepatocytes, myeloid cells, or both. We performed LTs and injected lipopolysaccharide (LPS) to evaluate the effect of intracellular HMGB1 in EAD. Ablation of Hmgb1 in hepatocytes and myeloid cells of donors and recipients exacerbated early allograft injury after LT. Ablation of Hmgb1 from liver grafts did not affect graft injury; however, lack of Hmgb1 from recipient myeloid cells increased reactive oxygen species (ROS) and inflammation in liver grafts and exacerbated injury. Neutrophils lacking HMGB1 were more activated, showed enhanced pro-oxidant and pro-inflammatory signatures, and reduced biosynthesis and metabolism of inositol polyphosphates (InsPs). On LT reperfusion or LPS treatment, there was significant neutrophil mobilization and infiltration into the liver and enhanced production of ROS and pro-inflammatory cytokines when intracellular Hmgb1 was absent. Depletion of neutrophils using anti-Ly6G antibody attenuated graft injury in recipients with myeloid cell Hmgb1 ablation. CONCLUSIONS: Neutrophil HMGB1 derived from recipients is central to regulate their activation, limits the production of ROS and pro-inflammatory cytokines, and protects from early liver allograft injury.


Assuntos
Proteína HMGB1 , Transplante de Fígado , Traumatismo por Reperfusão , Camundongos , Animais , Neutrófilos/metabolismo , Proteína HMGB1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/metabolismo , Aloenxertos , Citocinas/metabolismo
8.
Hepatology ; 78(4): 1118-1132, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37098756

RESUMO

BACKGROUND AIMS: Excessive deposition and crosslinking of extracellular matrix increases liver density and stiffness, promotes fibrogenesis, and increases resistance to fibrinolysis. An emerging therapeutic opportunity in liver fibrosis is to target the composition of the extracellular matrix or block pathogenic communication with surrounding cells. However, the type and extent of extracellular changes triggering liver fibrosis depend on the underlying etiology. Our aim was to unveil matrisome genes not dependent on etiology, which are clinically relevant to liver fibrosis. APPROACH RESULTS: We used transcriptomic profiles from liver fibrosis cases of different etiologies to identify and validate liver fibrosis-specific matrisome genes (LFMGs) and their clinical and biological relevance. Dysregulation patterns and cellular landscapes of LFMGs were further explored in mouse models of liver fibrosis progression and regression by bulk and single-cell RNA sequencing. We identified 35 LFMGs, independent of etiology, representing an LFMG signature defining liver fibrosis. Expression of the LFMG signature depended on histological severity and was reduced in regressive livers. Patients with liver fibrosis, even with identical pathological scores, could be subclassified into LFMG Low and LFMG High , with distinguishable clinical, cellular, and molecular features. Single-cell RNA sequencing revealed that microfibrillar-associated protein 4 + activated HSC increased in LFMG High patients and were primarily responsible for the LFMG signature expression and dysregulation. CONCLUSIONS: The microfibrillar-associated protein 4 + -activated HSC-derived LFMG signature classifies patients with liver fibrosis with distinct clinical and biological characteristics. Our findings unveil hidden information from liver biopsies undetectable using traditional histologic assessments.


Assuntos
Matriz Extracelular , Cirrose Hepática , Camundongos , Animais , Humanos , Cirrose Hepática/patologia , Matriz Extracelular/metabolismo , Fígado/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo
9.
Hepatology ; 78(3): 741-757, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999534

RESUMO

BACKGROUND AND AIMS: HCC, the third leading cause of cancer-related death, arises in the context of liver fibrosis. Although HCC is generally poorly fibrogenic, some tumors harbor focal intratumor extracellular matrix (ECM) deposits called "fibrous nests." To date, the molecular composition and clinical relevance of these ECM deposits have not been fully defined. APPROACH AND RESULTS: We performed quantitative matrisome analysis by tandem mass tags mass spectrometry in 20 human cancer specific matrisome (HCCs) with high or low-grade intratumor fibrosis and matched nontumor tissues, as well as in 12 livers from mice treated with vehicle, carbon tetrachloride, or diethylnitrosamine. We found 94 ECM proteins differentially abundant between high and low-grade fibrous nests, including interstitial and basement membrane components, such as several collagens, glycoproteins, proteoglycans, enzymes involved in ECM stabilization and degradation, and growth factors. Pathway analysis revealed a metabolic switch in high-grade fibrosis, with enhanced glycolysis and decreased oxidative phosphorylation. Integrating the quantitative proteomics with transcriptomics from HCCs and nontumor livers (n = 2,285 samples), we identified a subgroup of fibrous nest HCCs, characterized by cancer-specific ECM remodeling, expression of the WNT/TGFB (S1) subclass signature, and poor patient outcome. Fibrous nest HCCs abundantly expressed an 11-fibrous-nest - protein signature, associated with poor patient outcome, by multivariate Cox analysis, and validated by multiplex immunohistochemistry. CONCLUSIONS: Matrisome analysis highlighted cancer-specific ECM deposits, typical of the WNT/TGFB HCC subclass, associated with poor patient outcomes. Hence, histologic reporting of intratumor fibrosis in HCC is of clinical relevance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fibrose , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
11.
Cell Mol Gastroenterol Hepatol ; 14(4): 813-839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811073

RESUMO

BACKGROUND & AIMS: The gut-liver axis plays a key role in the pathogenesis of alcohol-associated liver disease (ALD). We demonstrated that Opn-/- develop worse ALD than wild-type (WT) mice; however, the role of intestinal osteopontin (OPN) in ALD remains unknown. We hypothesized that overexpression of OPN in intestinal epithelial cells (IECs) could ameliorate ALD by preserving the gut microbiome and the intestinal barrier function. METHODS: OpnKI IEC, OpnΔIEC, and WT mice were fed control or ethanol Lieber-DeCarli diet for 6 weeks. RESULTS: OpnKI IEC but not OpnΔIEC mice showed improved intestinal barrier function and protection from ALD. There were less pathogenic and more beneficial bacteria in ethanol-fed OpnKI IEC than in WT mice. Fecal microbiome transplant (FMT) from OpnKI IEC to WT mice protected from ALD. FMT from ethanol-fed WT to OpnKI IEC mice failed to induce ALD. Antimicrobial peptides, Il33, pSTAT3, aryl hydrocarbon receptor (Ahr), and tight-junction protein expression were higher in IECs from jejunum of ethanol-fed OpnKI IEC than of WT mice. Ethanol-fed OpnKI IEC showed more tryptophan metabolites and short-chain fatty acids in portal serum than WT mice. FMT from OpnKI IEC to WT mice enhanced IECs Ahr and tight-junction protein expression. Oral administration of milk OPN replicated the protective effect of OpnKI IEC mice in ALD. CONCLUSION: Overexpression of OPN in IECs or administration of milk OPN maintain the intestinal microbiome by intestinal antimicrobial peptides. The increase in tryptophan metabolites and short-chain fatty acids signaling through the Ahr in IECs, preserve the intestinal barrier function and protect from ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Intestinos , Hepatopatias Alcoólicas , Osteopontina , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Etanol/toxicidade , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Interleucina-33 , Intestinos/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Osteopontina/genética , Osteopontina/metabolismo , Receptores de Hidrocarboneto Arílico , Triptofano
12.
Hepatol Commun ; 6(8): 2155-2169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35344292

RESUMO

Silencing the Hippo kinases mammalian sterile 20-like 1 and 2 (MST1/2) activates the transcriptional coactivator yes-associated protein (YAP) in human hepatocellular carcinoma (HCC). Hepatocyte-derived high-mobility group box-1 (HMGB1) regulates YAP expression; however, its contribution to HCC in the context of deregulated Hippo signaling is unknown. Here, we hypothesized that HMGB1 is required for hepatocarcinogenesis by activating YAP in Hippo signaling-deficient (Mst1/2ΔHep ) mice. Mst1/2ΔHep mice developed HCC within 3.5 months of age and had increased hepatic expression of HMGB1 and elevated YAP activity compared to controls. To understand the contribution of HMGB1, we generated Mst1/2&Hmgb1ΔHep mice. They exhibited decreased YAP activity, cell proliferation, inflammation, fibrosis, atypical ductal cell expansion, and HCC burden at 3.5 months compared to Mst1/2∆Hep mice. However, Mst1/2&Hmgb1ΔHep mice were smaller, developed hyperbilirubinemia, had more liver injury with intrahepatic biliary defects, and had reduced hemoglobin compared to Mst1/2ΔHep mice. Conclusion: Hepatic HMGB1 promotes hepatocarcinogenesis by regulation of YAP activity; nevertheless, it maintains intrahepatic bile duct physiology under Hippo signaling deficiency.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Via de Sinalização Hippo , Hiperbilirrubinemia , Neoplasias Hepáticas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Proteína HMGB1/genética , Humanos , Hiperbilirrubinemia/genética , Neoplasias Hepáticas/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
13.
Sci Rep ; 12(1): 1859, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115564

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the receptor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causing Coronavirus disease 2019 (COVID-19). Transmembrane serine protease 2 (TMPRSS2) is a coreceptor. Abnormal hepatic function in COVID-19 suggests specific or bystander liver disease. Because liver cancer cells express the ACE2 viral receptor, they are widely used as models of SARS-CoV-2 infection in vitro. Therefore, the purpose of this study was to analyze ACE2 and TMPRSS2 expression and localization in human liver cancers and in non-tumor livers. We studied ACE2 and TMPRSS2 in transcriptomic datasets totaling 1503 liver cancers, followed by high-resolution confocal multiplex immunohistochemistry and quantitative image analysis of a 41-HCC tissue microarray. In cancers, we detected ACE2 and TMPRSS2 at the biliary pole of tumor hepatocytes. In whole mount sections of five normal liver samples, we identified ACE2 in hepatocyte's bile canaliculi, biliary epithelium, sinusoidal and capillary endothelial cells. Tumors carrying mutated ß-catenin showed ACE2 DNA hypomethylation and higher mRNA and protein expression, consistently with predicted ß-catenin response sites in the ACE2 promoter. Finally, ACE2 and TMPRSS2 co-expression networks highlighted hepatocyte-specific functions, oxidative stress and inflammation, suggesting a link between inflammation, ACE2 dysfunction and metabolic breakdown.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Metilação de DNA , Expressão Gênica , Humanos , Inflamação , Mutação , Estresse Oxidativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Virais/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
14.
Hepatol Commun ; 6(4): 692-709, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34730871

RESUMO

Osteopontin (OPN) expression correlates with tumor progression in many cancers, including hepatocellular carcinoma (HCC); however, its role in the onset of HCC remains unclear. We hypothesized that increased hepatocyte-derived OPN is a driver of hepatocarcinogenesis. Analysis of a tissue microarray of 366 human samples revealed a continuous increase in OPN expression during hepatocarcinogenesis. In patients with cirrhosis, a transcriptome-based OPN correlation network was associated with HCC incidence along 10 years of follow-up, together with messenger RNA (mRNA) signatures of carcinogenesis. After diethylnitrosamine (DEN) injection, mice with conditional overexpression of Opn in hepatocytes (OpnHep transgenic [Tg]) showed increased tumor burden. Surprisingly, mice with conditional ablation of Opn in hepatocytes (OpnΔHep ) expressed a similar phenotype. The acute response to DEN was reduced in OpnΔHep , which also showed more cancer stem/progenitor cells (CSCs, CD44+ AFP+ ) at 5 months. CSCs from OpnHep Tg mice expressed several mRNA signatures known to promote carcinogenesis, and mRNA signatures from OpnHep Tg mice were associated with poor outcome in human HCC patients. Treatment with rOPN had little effect on CSCs, and their progression to HCC was similar in Opn-/- compared with wild-type mice. Finally, ablation of Cd44, an OPN receptor, did not reduce tumor burden in Cd44-/- OpnHep Tg mice. Conclusions: Hepatocyte-derived OPN acts as a tumor suppressor at physiological levels by controlling the acute response to DEN and the presence of CSCs, while induction of OPN is pro-tumorigenic. This is primarily due to intracellular events rather that by the secretion of the protein and receptor activation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Camundongos , Osteopontina/genética
15.
Hepatol Commun ; 6(1): 133-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558855

RESUMO

Alcohol-associated liver disease (ALD) is a significant clinical problem for which the most effective therapy is alcohol abstinence. The two aims of this study were, first, to identify the liver transcriptome, fecal microbiome, and portal serum metabolome at peak injury and during early and late resolution from ALD; and second, to integrate their interactions and understand better the pathogenesis of ALD. To provoke alcohol-induced liver injury, female and male wild-type mice were fed the control or ethanol Lieber-DeCarli diets for 6 weeks. To study early and late resolution, alcohol was withdrawn from the diet and mice were sacrificed after 3 and 14 days, respectively. At peak injury, there was increased signal transducer and activator of transcription (Stat3), Rho-GTPases, Tec kinase and glycoprotein VI (Gp6), and decreased peroxisome proliferator-activated receptor signaling. During resolution from ALD, there was up-regulation of vitamin D receptor/retinoid X receptor, toll-like receptor, p38 and Stat3, and down-regulation of liver X receptor signaling. Females showed significant changes in catabolic pathways, whereas males increased cellular stress, injury, and immune-response pathways that decreased during resolution. The bacterial genus Alistipes and the metabolite dipeptide glycyl-L-leucine increased at peak but decreased during resolution from ALD in both genders. Hepatic induction of mitogen-activated protein kinase (Map3k1) correlated with changes in the microbiome and metabolome at peak but was restored during ALD resolution. Inhibition of MAP3K1 protected from ALD in mice. Conclusion: Alcohol abstinence restores the liver transcriptome, fecal microbiome, and portal serum metabolome in a gender-specific manner. Integration of multiomics data identified Map3k1 as a key gene driving pathogenesis and resolution from ALD.


Assuntos
Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Metaboloma , Microbiota , Transcriptoma , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Fezes/microbiologia , Feminino , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/microbiologia , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Regulação para Cima
16.
Hepatol Commun ; 5(9): 1571-1585, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34510837

RESUMO

Chronic hepatitis B virus (HBV) infection changes the composition of the extracellular matrix (ECM) and enables the onset and progression of hepatocellular carcinoma (HCC). The ensemble of ECM proteins and associated factors is a major component of the tumor microenvironment. Our aim was to unveil the matrisome genes from HBV-related HCC. Transcriptomic and clinical profiles from 444 patients with HBV-related HCC were retrieved from the Gene Expression Omnibus (GEO) and Cancer Genome Atlas (TCGA) repositories. Matrisome genes associated with HBV-related hepatocarcinogenesis, matrisome gene modules, HCC subgroups, and liver-specific matrisome genes were systematically analyzed, followed by identification of their biological function and clinical relevance. Eighty matrisome genes, functionally enriched in immune response, ECM remodeling, or cancer-related pathways, were identified as associated with HBV-related HCC, which could robustly discriminate HBV-related HCC tumor from nontumor samples. Subsequently, four significant matrisome gene modules were identified as showing functional homogeneity linked to cell cycle activity. Two subgroups of patients with HBV-related HCC were classified based on the highly correlated matrisome genes. The high-expression subgroup (15.0% in the TCGA cohort and 17.9% in the GEO cohort) exhibited favorable clinical prognosis, activated metabolic activity, exhausted cell cycle, strong immune infiltration, and lower tumor purity. Four liver-specific matrisome genes (F9, HPX [hemopexin], IGFALS [insulin-like growth-factor-binding protein, acid labile subunit], and PLG [plasminogen]) were identified as involved in HBV-related HCC progression and prognosis. Conclusion: This study identified the expression and function of matrisome genes from HBV-related hepatocarcinogenesis, providing major insight to understand HBV-related HCC and develop potential therapeutic opportunities.

17.
Hepatology ; 73(4): 1594-1608, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32986864

RESUMO

Osteopontin (OPN) was first identified in 1986. The prefix osteo- means bone; however, OPN is expressed in other tissues, including liver. The suffix -pontin means bridge and denotes the role of OPN as a link protein within the extracellular matrix. While OPN has well-established physiological roles, multiple "omics" analyses suggest that it is also involved in chronic liver disease. In this review, we provide a summary of the OPN gene and protein structure and regulation. We outline the current knowledge on how OPN is involved in hepatic steatosis in the context of alcoholic liver disease and non-alcoholic fatty liver disease. We describe the mechanisms whereby OPN participates in inflammation and liver fibrosis and discuss current research on its role in hepatocellular carcinoma and cholangiopathies. To conclude, we highlight important points to consider when doing research on OPN and provide direction for making progress on how OPN contributes to chronic liver disease.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias Alcoólicas/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Animais , Carcinoma Hepatocelular/genética , Modelos Animais de Doenças , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Expressão Gênica , Humanos , Cirrose Hepática/genética , Hepatopatias Alcoólicas/genética , Neoplasias Hepáticas/genética , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Osteopontina/química
18.
J Hepatol ; 73(4): 933-951, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32371195

RESUMO

Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.


Assuntos
Homeostase/fisiologia , Hepatopatias/metabolismo , Fígado/metabolismo , Estresse Oxidativo/fisiologia , Animais , Humanos , Fígado/patologia , Hepatopatias/patologia , Transdução de Sinais
19.
Hepatol Commun ; 4(1): 92-108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909358

RESUMO

Nonalcoholic steatohepatitis (NASH) is a metabolic disorder in which poor nutrition and the gut-to-liver interaction play a major role. We previously established that hepatic high mobility group box-1 (HMGB1) is involved in chronic liver disease. HMGB1 increases in patients with NASH and it is expressed in intestinal epithelial cells (IEC); yet, the role of intestinal HMGB1 in the pathogenesis of NASH has not been investigated. Thus, we hypothesized that IEC-derived HMGB1 could play a role in NASH due to local effects in the intestine that govern hepatic steatosis. Control littermates and Hmgb1 ΔIEC mice were fed for 1 or 24 weeks a control diet or a high fat, high cholesterol (CHO) and fructose-enriched diet (HFCFD). Hepatic and intestinal injury were analyzed. Hmgb1 ΔIEC mice were protected from HFCFD-induced NASH after 1 or 24 weeks of feeding; however, they showed extensive atypical lipid droplet accumulation and increased concentrations of triglycerides (TG) and CHO in jejunal IEC together with lower TG and other lipid classes in serum. Olive oil or CHO gavage resulted in decreased serum TG and CHO in Hmgb1 ΔIEC mice, respectively, indicating delayed and/or reduced chylomicron (CM) efflux. There was significant up-regulation of scavenger receptor class B type 1 (SR-B1) and down-regulation of apolipoprotein B48 (ApoB48) proteins, suggesting decreased lipid packaging and/or CM formation that resulted in lesser hepatosteatosis. Conclusion: Ablation of Hmgb1 in IEC causes up-regulation of SR-B1 and down-regulation of ApoB48, leads to lipid accumulation in jejunal IEC, decreases CM packaging and/or release, reduces serum TG, and lessens liver steatosis, therefore protecting Hmgb1 ΔIEC mice from HFCFD-induced NASH.

20.
Cancer Res ; 79(8): 1869-1883, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30837223

RESUMO

Human hepatocellular carcinoma (HCC) heterogeneity promotes recurrence and therapeutic resistance. We recently demonstrated that inflammation favors hepatocyte retrodifferentiation into progenitor cells. Here, we identify the molecular effectors that induce metabolic reprogramming, chemoresistance, and invasiveness of retrodifferentiated HCC stem cells. Spheroid cultures of human HepaRG progenitors (HepaRG-Spheres), HBG-BC2, HepG2, and HuH7 cells and isolation of side population (SP) from HepaRG cells (HepaRG-SP) were analyzed by transcriptomics, signaling pathway analysis, and evaluation of chemotherapies. Gene expression profiling of HepaRG-SP and HepaRG-Spheres revealed enriched signatures related to cancer stem cells, metastasis, and recurrence and showed that HepaRG progenitors could retrodifferentiate into an immature state. The transcriptome from these stem cells matched that of proliferative bad outcome HCCs in a cohort of 457 patients. These HCC stem cells expressed high levels of cytokines triggering retrodifferentiation and displayed high migration and invasion potential. They also showed changes in mitochondrial activity with reduced membrane potential, low ATP production, and high lactate production. These changes were, in part, related to angiopoietin-like 4 (ANGPTL4)-induced upregulation of pyruvate dehydrogenase kinase 4 (PDK4), an inhibitor of mitochondrial pyruvate dehydrogenase. Upregulation of ANGPTL4 and PDK4 paralleled that of stem cells markers in human HCC specimens. Moreover, the PDK4 inhibitor dichloroacetate reversed chemoresistance to sorafenib or cisplatin in HCC stem cells derived from four HCC cell lines. In conclusion, retrodifferentiated cancer cells develop enhanced invasion and therapeutic resistance through ANGPTL4 and PDK4. Therefore, restoration of mitochondrial activity in combination with chemotherapy represents an attractive therapeutic approach in HCC. SIGNIFICANCE: Restoring mitochondrial function in human hepatocellular carcinomas overcomes cancer resistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Apoptose , Carcinoma Hepatocelular/metabolismo , Diferenciação Celular , Proliferação de Células , Reprogramação Celular , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...