Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(3): 462-480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216735

RESUMO

Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.


Assuntos
Difosfatos , Vírus Gigantes , Difosfatos/metabolismo , Vírus Gigantes/metabolismo , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Adv Biol Regul ; 83: 100835, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782304

RESUMO

Initial studies on the inositol phosphates metabolism were enabled by the social amoeba Dictyostelium discoideum. The abundant amount of inositol hexakisphosphate (IP6 also known as Phytic acid) present in the amoeba allowed the discovery of the more polar inositol pyrophosphates, IP7 and IP8, possessing one or two high energy phosphoanhydride bonds, respectively. Considering the contemporary growing interest in inositol pyrophosphates, it is surprising that in recent years D. discoideum, has contributed little to our understanding of their metabolism and function. This work fulfils this lacuna, by analysing the ip6k, ppip5k and ip6k-ppip5K amoeba null strains using PAGE, 13C-NMR and CE-MS analysis. Our study reveals an inositol pyrophosphate metabolism more complex than previously thought. The amoeba Ip6k synthesizes the 4/6-IP7 in contrast to the 5-IP7 isomer synthesized by the mammalian homologue. The amoeba Ppip5k synthesizes the same 1/3-IP7 as the mammalian enzyme. In D. discoideum, the ip6k strain possesses residual amounts of IP7. The residual IP7 is also present in the ip6k-ppip5K strain, while the ppip5k single mutant shows a decrease in both IP7 and IP8 levels. This phenotype is in contrast to the increase in IP7 observable in the yeast vip1Δ strain. The presence of IP8 in ppip5k and the presence of IP7 in ip6k-ppip5K indicate the existence of an additional inositol pyrophosphate synthesizing enzyme. Additionally, we investigated the existence of a metabolic relationship between inositol pyrophosphate synthesis and inorganic polyphosphate (polyP) metabolism as observed in yeast. These studies reveal that contrary to the yeast, Ip6k and Ppip5k do not control polyP cellular level in amoeba.


Assuntos
Dictyostelium , Animais , Dictyostelium/genética , Dictyostelium/metabolismo , Difosfatos/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo
3.
Adv Biol Regul ; 79: 100782, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422459

RESUMO

Inositol phosphate encompasses a large multifaceted family of signalling molecules that originate from the combinatorial attachment of phosphate groups to the inositol ring. To date, four distinct inositol kinases have been identified, namely, IPK, ITPK, IPPK (IP5-2K), and PPIP5K. Although, ITPKs have recently been identified in archaea, eukaryotes have taken advantage of these enzymes to create a sophisticated signalling network based on inositol phosphates. However, it remains largely elusive what fundamental biochemical principles control the signalling cascade. Here, we present an evolutionary approach to understand the development of the 'inositol phosphate code' in eukaryotes. Distribution analyses of these four inositol kinase groups throughout the eukaryotic landscape reveal the loss of either ITPK, or of PPIP5K proteins in several species. Surprisingly, the loss of IPPK, an enzyme thought to catalyse the rate limiting step of IP6 (phytic acid) synthesis, was also recorded. Furthermore, this study highlights a noteworthy difference between animal (metazoan) and plant (archaeplastida) lineages. While metazoan appears to have a substantial amplification of IPK enzymes, archaeplastida genomes show a considerable increase in ITPK members. Differential evolution of IPK and ITPK between plant and animal lineage is likely reflective of converging functional adaptation of these two types of inositol kinases. Since, the IPK family comprises three sub-types IPMK, IP6K, and IP3-3K each with dedicated enzymatic specificity in metazoan, we propose that the amplified ITPK group in plant could be classified in sub-types with distinct enzymology.


Assuntos
Células Eucarióticas/enzimologia , Fosfotransferases/metabolismo , Animais , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Humanos , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Família Multigênica , Fosfotransferases/genética , Filogenia , Plantas/enzimologia , Plantas/metabolismo , Transdução de Sinais
4.
Br J Pharmacol ; 178(5): 1149-1163, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347604

RESUMO

BACKGROUND AND PURPOSE: Cannabidiol (CBD) has been shown to differentially regulate the mechanistic target of rapamycin complex 1 (mTORC1) in preclinical models of disease, where it reduces activity in models of epilepsies and cancer and increases it in models of multiple sclerosis (MS) and psychosis. Here, we investigate the effects of phytocannabinoids on mTORC1 and define a molecular mechanism. EXPERIMENTAL APPROACH: A novel mechanism for phytocannabinoids was identified using the tractable model system, Dictyostelium discoideum. Using mouse embryonic fibroblasts, we further validate this new mechanism of action. We demonstrate clinical relevance using cells derived from healthy individuals and from people with MS (pwMS). KEY RESULTS: Both CBD and the more abundant cannabigerol (CBG) enhance mTORC1 activity in D. discoideum. We identify a mechanism for this effect involving inositol polyphosphate multikinase (IPMK), where elevated IPMK expression reverses the response to phytocannabinoids, decreasing mTORC1 activity upon treatment, providing new insight on phytocannabinoids' actions. We further validated this mechanism using mouse embryonic fibroblasts. Clinical relevance of this effect was shown in primary human peripheral blood mononuclear cells, where CBD and CBG treatment increased mTORC1 activity in cells derived from healthy individuals and decreased mTORC1 activity in cells derived from pwMS. CONCLUSION AND IMPLICATIONS: Our findings suggest that both CBD and the abundant CBG differentially regulate mTORC1 signalling through a mechanism dependent on the activity of the upstream IPMK signalling pathway, with potential relevance to the treatment of mTOR-related disorders, including MS.


Assuntos
Canabinoides/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Células Cultivadas , Fibroblastos , Leucócitos Mononucleares , Camundongos
5.
Biochem Soc Trans ; 48(1): 95-101, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049314

RESUMO

Inorganic polyphosphate (polyP) is a ubiquitous polymer of tens to hundreds of orthophosphate residues linked by high-energy phosphoanhydride bonds. In prokaryotes and lower eukaryotes, both the presence of polyP and of the biosynthetic pathway that leads to its synthesis are well-documented. However, in mammals, polyP is more elusive. Firstly, the mammalian enzyme responsible for the synthesis of this linear biopolymer is unknown. Secondly, the low sensitivity and specificity of available polyP detection methods make it difficult to confidently ascertain polyP presence in mammalian cells, since in higher eukaryotes, polyP exists in lower amounts than in yeast or bacteria. Despite this, polyP has been given a remarkably large number of functions in mammals. In this review, we discuss some of the proposed functions of polyP in mammals, the limitations of the current detection methods and the urgent need to understand how this polymer is synthesized.


Assuntos
Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Hidrolases Anidrido Ácido/metabolismo , Animais , Humanos , Fosfolipase D/metabolismo
6.
J Biol Chem ; 295(6): 1439-1451, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31844018

RESUMO

A recently-discovered protein post-translational modification, lysine polyphosphorylation (K-PPn), consists of the covalent attachment of inorganic polyphosphate (polyP) to lysine residues. The nonenzymatic nature of K-PPn means that the degree of this modification depends on both polyP abundance and the amino acids surrounding the modified lysine. K-PPn was originally discovered in budding yeast (Saccharomyces cerevisiae), in which polyP anabolism and catabolism are well-characterized. However, yeast vacuoles accumulate large amounts of polyP, and upon cell lysis, the release of the vacuolar polyP could nonphysiologically cause K-PPn of nuclear and cytosolic targets. Moreover, yeast vacuoles possess two very active endopolyphosphatases, Ppn1 and Ppn2, that could have opposing effects on the extent of K-PPn. Here, we characterized the contribution of vacuolar polyP metabolism to K-PPn of two yeast proteins, Top1 (DNA topoisomerase 1) and Nsr1 (nuclear signal recognition 1). We discovered that whereas Top1-targeting K-PPn is only marginally affected by vacuolar polyP metabolism, Nsr1-targeting K-PPn is highly sensitive to the release of polyP and of endopolyphosphatases from the vacuole. Therefore, to better study K-PPn of cytosolic and nuclear targets, we constructed a yeast strain devoid of vacuolar polyP by targeting the exopolyphosphatase Ppx1 to the vacuole and concomitantly depleting the two endopolyphosphatases (ppn1Δppn2Δ, vt-Ppx1). This strain enabled us to study K-PPn of cytosolic and nuclear targets without the interfering effects of cell lysis on vacuole polyP and of endopolyphosphatases. Furthermore, we also define the fundamental nature of the acidic amino acid residues to the K-PPn target domain.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Polifosfatos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Vacúolos/metabolismo
7.
Methods Mol Biol ; 2091: 59-71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31773570

RESUMO

The yeast Saccharomyces cerevisiae has given us much information on the metabolism and function of inositol polyphosphates and inorganic polyphosphate. To expand our knowledge of the metabolic as well as functional connections between inositol polyphosphates and inorganic polyphosphate, we have refined and developed techniques to extract and analyze these molecules in a second eukaryotic experimental model, the amoeba Dictyostelium discoideum. This amoeba, possessing a well-defined developmental program, is ideal to study physiological changes in the levels of inositol polyphosphates and inorganic polyphosphate, since levels of both molecules increase at late stages of development. We detail here the methods used to extract inositol polyphosphates using perchloric acid and inorganic polyphosphate using acidic phenol. We also present the postextraction procedures to visualize and quantify these molecules by polyacrylamide gel electrophoresis and by malachite green assay.


Assuntos
Dictyostelium/crescimento & desenvolvimento , Polifosfatos/análise , Fracionamento Químico , Dictyostelium/química , Eletroforese em Gel de Poliacrilamida , Modelos Biológicos , Percloratos/química , Fenóis/química , Corantes de Rosanilina/química
8.
Proc Natl Acad Sci U S A ; 116(49): 24551-24561, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31754032

RESUMO

Inositol phosphates (IPs) comprise a network of phosphorylated molecules that play multiple signaling roles in eukaryotes. IPs synthesis is believed to originate with IP3 generated from PIP2 by phospholipase C (PLC). Here, we report that in mammalian cells PLC-generated IPs are rapidly recycled to inositol, and uncover the enzymology behind an alternative "soluble" route to synthesis of IPs. Inositol tetrakisphosphate 1-kinase 1 (ITPK1)-found in Asgard archaea, social amoeba, plants, and animals-phosphorylates I(3)P1 originating from glucose-6-phosphate, and I(1)P1 generated from sphingolipids, to enable synthesis of IP6 We also found using PAGE mass assay that metabolic blockage by phosphate starvation surprisingly increased IP6 levels in a ITPK1-dependent manner, establishing a route to IP6 controlled by cellular metabolic status, that is not detectable by traditional [3H]-inositol labeling. The presence of ITPK1 in archaeal clades thought to define eukaryogenesis indicates that IPs had functional roles before the appearance of the eukaryote.


Assuntos
Fosfatos de Inositol/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sequência Conservada , Células HCT116 , Humanos , Hidrólise , Inositol/metabolismo , Fosfatos de Inositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Fosfolipases Tipo C/metabolismo
9.
Adv Biol Regul ; 67: 74-83, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28964726

RESUMO

Inositol polyphosphates are a diverse and multifaceted class of intracellular messengers omnipresent in eukaryotic cells. These water-soluble molecules regulate many aspects of fundamental cell physiology. Removing this metabolic pathway is deleterious: inositol phosphate kinase null mutations can result in lethality or substantial growth phenotypes. Inositol polyphosphate synthesis occurs through the actions of a set of kinases that phosphorylate phospholipase-generated IP3 to higher phosphorylated forms, such as the fully phosphorylated IP6 and the inositol pyrophosphates IP7 and IP8. Unicellular organisms have a reduced array of the kinases for synthesis of higher phosphorylated inositol polyphosphates, while human cells possess two metabolic routes to IP6. The enzymes responsible for inositol polyphosphate synthesis have been identified in all eukaryote genomes, although their amino acid sequence homology is often barely detectable by common search algorithms. Homology between human and microbial inositol phosphate kinases is restricted to a few catalytically important residues. Recent studies of the inositol phosphate metabolic pathways in pathogenic fungi (Cryptococcus neoformans) and protozoa (Trypanosome brucei) have revealed the importance of the highly phosphorylated inositol polyphosphates to the fitness and thus virulence of these pathogens. Given this, identification of inositol kinase inhibitors specifically targeting the kinases of pathogenic microorganisms is desirable and achievable.


Assuntos
Antifúngicos/uso terapêutico , Criptococose , Cryptococcus neoformans/metabolismo , Desenvolvimento de Medicamentos , Fosfatos de Inositol , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana , Animais , Antifúngicos/química , Criptococose/tratamento farmacológico , Criptococose/metabolismo , Criptococose/patologia , Cryptococcus neoformans/patogenicidade , Humanos , Fosfatos de Inositol/antagonistas & inibidores , Fosfatos de Inositol/metabolismo , Tripanossomicidas/química , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/patologia
10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1036-1037: 149-156, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27760404

RESUMO

Spiralin is the most abundant protein of several species of spiroplasmas, helical, motile bacteria pathogenic for arthropods and plants. This amphiphilic protein is anchored to the outer face of the plasma membrane by a lipoylated N-terminal cysteine. Although spiroplasma pathogenicity in mammals is controversial, it was shown that spiralin is highly immunogenic and endowed with immunomodulatory activity. In this paper, we describe a high performance method for the purification of Spiroplasma melliferum spiralin under non-denaturing conditions. The protein was selectively extracted with 3-[(3-cholamidopropyl) dimethylammonio]-1-propyl sulfonate (CHAPS) from the membrane pre-treated with sodium dodecyl-N-sarcosinate (Sarkosyl), and purified to homogeneity by cation-exchange HPLC with an overall yield of ∼60%. Detergent-depleted, water-soluble micelles of spiralin displaying a mean diameter of 170Å, as evidenced by transmission electron microscopy, were obtained by dialysis detergent removal. Circular dichroism spectroscopy and cross immunoprecipitation assay of the purified spiralin strongly suggested that this purification method could retain the structural characteristics of the native spiralin. The strategy developed to purify spiralin (two successive selective extractions of membrane proteins with mild detergents followed by ion-exchange chromatography) should prove useful for the purification of membrane lipoproteins of other bacteria of the class Mollicutes including different pathogens for humans, animals and plants.


Assuntos
Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Spiroplasma/química , Proteínas da Membrana Bacteriana Externa/química , Ácidos Cólicos/química , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Dicroísmo Circular , Detergentes/química , Conformação Proteica , Desnaturação Proteica , Sarcosina/análogos & derivados , Sarcosina/química
11.
J Biol Chem ; 291(42): 22262-22275, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27587415

RESUMO

SPX domains control phosphate homeostasis in eukaryotes. Ten genes in yeast encode SPX-containing proteins, among which YDR089W is the only one of unknown function. Here, we show that YDR089W encodes a novel subunit of the vacuole transporter chaperone (VTC) complex that produces inorganic polyphosphate (polyP). The polyP synthesis transfers inorganic phosphate (Pi) from the cytosol into the acidocalcisome- and lysosome-related vacuoles of yeast, where it can be released again. It was therefore proposed for buffer changes in cytosolic Pi concentration (Thomas, M. R., and O'Shea, E. K. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 9565-9570). Vtc5 physically interacts with the VTC complex and accelerates the accumulation of polyP synthesized by it. Deletion of VTC5 reduces polyP accumulation in vivo and in vitro Its overexpression hyperactivates polyP production and triggers the phosphate starvation response via the PHO pathway. Because this Vtc5-induced starvation response can be reverted by shutting down polyP synthesis genetically or pharmacologically, we propose that polyP synthesis rather than Vtc5 itself is a regulator of the PHO pathway. Our observations suggest that polyP synthesis not only serves to establish a buffer for transient drops in cytosolic Pi levels but that it can actively decrease or increase the steady state of cytosolic Pi.


Assuntos
Proteínas de Transporte/metabolismo , Chaperonas Moleculares/metabolismo , Polifosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Sci Rep ; 6: 29045, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363625

RESUMO

The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector.


Assuntos
Transporte Biológico/genética , Proteínas SNARE/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/metabolismo , Ácidos/metabolismo , Fusão de Membrana/genética , Membranas/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/genética
13.
J Cell Sci ; 129(14): 2817-28, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252384

RESUMO

Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.


Assuntos
Fusão de Membrana , Tamanho das Organelas , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Citosol/metabolismo , Modelos Biológicos , Polifosfatos/metabolismo , Ligação Proteica , Proteínas de Transporte Vesicular/metabolismo
14.
Nat Cell Biol ; 17(5): 540-1, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25925583

RESUMO

How proteins migrate through the interconnected organelles of the endolysosomal system is poorly understood. A piece of the puzzle has been added with the identification of a complex of tethering factors that functions in the recycling of proteins towards the cell surface.


Assuntos
Endocitose , Endossomos/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Animais , Humanos
15.
J Biol Chem ; 290(20): 12821-32, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25817997

RESUMO

Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.


Assuntos
Fusão de Membrana/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Estrutura Terciária de Proteína , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/genética
16.
J Cell Sci ; 127(Pt 23): 5093-104, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25315834

RESUMO

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.


Assuntos
Chaperonas Moleculares/metabolismo , Polifosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Transporte Biológico , Domínio Catalítico , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Chaperonas Moleculares/genética , Mutação , Polifosfatos/toxicidade , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Vacúolos/enzimologia , Proteínas de Transporte Vesicular/genética
17.
Langmuir ; 27(24): 14947-57, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22040020

RESUMO

Identification of the key physicochemical parameters of proteins that determine their interfacial properties is still incomplete and represents a real stake challenge, especially for food proteins. Many studies have thus consisted in comparing the interfacial behavior of different proteins, but it is difficult to draw clear conclusions when the molecules are completely different on several levels. Here the adsorption process of a model protein, the hen egg-white lysozyme, and the same protein that underwent a thermal treatment in the dry state, was characterized. The consequences of this treatment have been previously studied: net charge and hydrophobicity increase and lesser protein stability, but no secondary and tertiary structure modification (Desfougères, Y.; Jardin, J.; Lechevalier, V.; Pezennec, S.; Nau, F. Biomacromolecules 2011, 12, 156-166). The present study shows that these slight modifications dramatically increase the interfacial properties of the protein, since the adsorption to the air-water interface is much faster and more efficient (higher surface pressure). Moreover, a thick and strongly viscoelastic multilayer film is created, while native lysozyme adsorbs in a fragile monolayer film. Another striking result is that completely different behaviors were observed between two molecular species, i.e., native and native-like lysozyme, even though these species could not be distinguished by usual spectroscopic methods. This suggests that the air-water interface could be considered as a useful tool to reveal very subtle differences between protein molecules.


Assuntos
Físico-Química , Muramidase/química , Água/química , Adsorção , Ar , Animais , Galinhas , Dessecação , Elasticidade , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia de Força Atômica , Conformação Molecular , Muramidase/análise , Pressão , Reologia , Análise Espectral , Eletricidade Estática , Propriedades de Superfície , Termodinâmica , Viscosidade
18.
Biomacromolecules ; 12(1): 156-66, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21166442

RESUMO

Protein chemical degradations occur naturally into living cells as soon as proteins have been synthesized. Among these modifications, deamidation of asparagine or glutamine residues has been extensively studied, whereas the intermediate state, a succinimide derivative, was poorly investigated because of the difficulty of isolating those transient species. We used an indirect method, a limited thermal treatment in the dry state at acidic pH, to produce stable cyclic imide residues in hen lysozyme molecules, enabling us to examine the structural and functional properties of so modified proteins. Five cyclic imide rings have been located at sites directly accessible to solvent and did not lead to any changes in secondary or tertiary structures. However, they altered the catalytic properties of lysozyme and significantly decreased the intrinsic stability of the molecules. Moreover, dimerization occurred during the treatment, and this phenomenon was proportional to the extent of chemical degradation. We propose that succinimide formation could be responsible for covalent bond formation under specific physicochemical conditions that could be found in vivo.


Assuntos
Muramidase/química , Multimerização Proteica , Succinimidas/química , Animais , Catálise , Galinhas , Temperatura Alta , Concentração de Íons de Hidrogênio , Estrutura Terciária de Proteína , Suínos
19.
J Phys Chem B ; 114(12): 4138-44, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20218578

RESUMO

Controlled interactions and assembly of proteins with one another promise to be a powerful approach for generating novel supramolecular architectures. In this study, we report on the ability of oppositely charged globular proteins to self-assemble into well-defined micrometer-sized spherical particles under specific physicochemical conditions. We show that microspheres were spontaneously formed in all binary protein mixtures tested once the physicochemical conditions were optimized. The optimal pH value, initial protein concentrations needed to form microspheres, and protein stoichiometry in these microspheres varied and depended on the structural features of the mixed proteins. We show that charge compensation is required but not sufficient to guide optimal protein assembly and organization into microspheres. Size difference between protein couples (acidic and basic) is a key element that defines optimal pH value for microsphere formation and the protein molar ratio in the formed microspheres. Our findings give new elements that can help to predict the assembly behavior of various proteins in mixed systems.


Assuntos
Microesferas , Proteínas/química , Cromatografia por Troca Iônica , Microscopia Confocal
20.
J Agric Food Chem ; 56(13): 5120-8, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18540622

RESUMO

Dry-heating is considered to be one of the most promising approaches to improving the functionality of food proteins. It has been shown that even if only minor structural modifications occur during dry-heating, the foaming properties of proteins are highly improved. With the recent results obtained in the field of foam stabilization by nanoparticles or protein aggregates in mind, a study was undertaken on the impact of dry-heating of lysozyme, used as a model protein, on its foaming properties. This work highlighted the fact that dry-heated hen egg white lysozyme simultaneously exhibited enhanced foaming properties and aggregation capacity. Although the conditions that favored bulk aggregation (high ionic strength, pH, treatment duration, and protein concentration) also favored foaming properties, the large bulk aggregates were not essential to obtain the best functionality. It is envisaged that heat-treated lysozyme may self-associate at the air/water interface, stabilizing air bubbles.


Assuntos
Manipulação de Alimentos , Indústria Alimentícia , Calefação , Muramidase/química , Animais , Galinhas , Feminino , Concentração de Íons de Hidrogênio , Cinética , Solubilidade , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...