Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 27(57): 7201-11, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18794799

RESUMO

Proteolysis targeting chimeric molecules (Protacs) target proteins for destruction by exploiting the ubiquitin-dependent proteolytic system of eukaryotic cells. We designed two Protacs that contain the peptide 'degron' from hypoxia-inducible factor-1alpha, which binds to the Von-Hippel-Lindau (VHL) E3 ubiquitin ligase complex, linked to either dihydroxytestosterone that targets the androgen receptor (AR; Protac-A), or linked to estradiol (E2) that targets the estrogen receptor-alpha (ERalpha; Protac-B). We hypothesized that these Protacs would recruit hormone receptors to the VHL E3 ligase complex, resulting in the degradation of receptors, and decreased proliferation of hormone-dependent cell lines. Treatment of estrogen-dependent breast cancer cells with Protac-B induced the degradation of ERalpha in a proteasome-dependent manner. Protac-B inhibited the proliferation of ERalpha-dependent breast cancer cells by inducing G(1) arrest, inhibition of retinoblastoma phosphorylation and decreasing expression of cyclin D1, progesterone receptors A and B. Protac-B treatment did not affect the proliferation of estrogen-independent breast cancer cells that lacked ERalpha expression. Similarly, Protac-A treatment of androgen-dependent prostate cancer cells induced G(1) arrest but did not affect cells that do not express AR. Our results suggest that Protacs specifically inhibit the proliferation of hormone-dependent breast and prostate cancer cells through degradation of the ERalpha and AR, respectively.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias da Próstata/tratamento farmacológico , Receptores de Esteroides/efeitos dos fármacos , Ubiquitinação/fisiologia , Antineoplásicos/química , Western Blotting , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidrotestosterona/administração & dosagem , Di-Hidrotestosterona/metabolismo , Estradiol/administração & dosagem , Estradiol/metabolismo , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Citometria de Fluxo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Masculino , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias da Próstata/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Receptores de Esteroides/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química
2.
Methods Enzymol ; 398: 391-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16275345

RESUMO

The 26S proteasome is a multisubunit complex that catalyzes ATP-dependent proteolysis of cellular proteins. It eliminates misfolded proteins, as well as labile regulatory proteins, thereby serving a central role in maintaining cellular homeostasis. The bulk of the known substrates of the 26S proteasome are earmarked for proteolysis by covalent modification with a multiubiquitin chain, which is recognized by specific receptors. Once targeted, the substrate is deubiquitinated and degraded by the 26S proteasome. This chapter describes assays that monitor ATP- and ubiquitin-dependent proteolysis of the S-Cdk inhibitor Sic1.


Assuntos
Complexo de Endopeptidases do Proteassoma/análise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Escherichia coli/metabolismo , Oligopeptídeos , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Especificidade por Substrato
3.
Mol Cell Biol ; 21(21): 7403-15, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11585921

RESUMO

Notch receptors and their ligands play important roles in both normal animal development and pathogenesis. We show here that the F-box/WD40 repeat protein SEL-10 negatively regulates Notch receptor activity by targeting the intracellular domain of Notch receptors for ubiquitin-mediated protein degradation. Blocking of endogenous SEL-10 activity was done by expression of a dominant-negative form containing only the WD40 repeats. In the case of Notch1, this block leads to an increase in Notch signaling stimulated by either an activated form of the Notch1 receptor or Jagged1-induced signaling through Notch1. Expression of dominant-negative SEL-10 leads to stabilization of the intracellular domain of Notch1. The Notch4 intracellular domain bound to SEL-10, but its activity was not increased as a result of dominant-negative SEL-10 expression. SEL-10 bound Notch4 via the WD40 repeats and bound preferentially to a phosphorylated form of Notch4 in cells. We mapped the region of Notch4 essential for SEL-10 binding to the C-terminal region downstream of the ankyrin repeats. When this C-terminal fragment of Notch4 was expressed in cells, it was highly labile but could be stabilized by the expression of dominant-negative SEL-10. Ubiquitination of Notch1 and Notch4 intracellular domains in vitro was dependent on SEL-10. Although SEL-10 interacts with the intracellular domains of both Notch1 and Notch4, these proteins respond differently to interference with SEL-10 function. Thus, SEL-10 functions to promote the ubiquitination of Notch proteins; however, the fates of these proteins may differ.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/fisiologia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Animais , Western Blotting , Linhagem Celular , Cisteína Endopeptidases , Relação Dose-Resposta a Droga , Deleção de Genes , Genes Dominantes , Vetores Genéticos , Humanos , Insetos , Ligantes , Luciferases/metabolismo , Modelos Genéticos , Complexos Multienzimáticos/antagonistas & inibidores , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Receptores Notch
4.
Mol Cell ; 8(2): 439-48, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11545745

RESUMO

Selective degradation of single subunits of multimeric complexes by the ubiquitin pathway underlies multiple regulatory switches, including those involving cyclins and Cdk inhibitors. The machinery that segregates ubiquitinated proteins from unmodified partners prior to degradation remains undefined. We report that ubiquitinated Sic1 (Ub-Sic1) embedded within inactive S phase cyclin-Cdk (S-Cdk) complexes was rapidly degraded by purified 26S proteasomes, yielding active S-Cdk. Mutant proteasomes that failed to degrade Ub-Sic1 activated S-Cdk only partially in an ATP-dependent manner. Whereas Ub-Sic1 was degraded within approximately 2 min, spontaneous dissociation of Ub-Sic1 from S-Cdk was approximately 200-fold slower. We propose that the 26S proteasome has the intrinsic capability to extract, unfold, and degrade ubiquitinated proteins while releasing bound partners untouched. Activation of S-Cdk reported herein represents a complete reconstitution of the regulatory switch underlying the G1/S transition in budding yeast.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Cisteína Endopeptidases , Proteínas Fúngicas/metabolismo , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae , Ubiquitinas/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina , Endopeptidases/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/genética , Immunoblotting , Mutação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Subunidades Proteicas , Saccharomycetales/fisiologia
5.
Mol Cell ; 8(1): 45-55, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11511359

RESUMO

The budding yeast RENT complex, consisting of at least three proteins (Net1, Cdc14, Sir2), is anchored to the nucleolus by Net1. RENT controls mitotic exit, nucleolar silencing, and nucleolar localization of Nop1. Here, we report two new functions of Net1. First, Net1 directly binds Pol I and stimulates rRNA synthesis both in vitro and in vivo. Second, Net1 modulates nucleolar structure by regulating rDNA morphology and proper localization of multiple nucleolar antigens, including Pol I. Importantly, we show that the nucleolar and previously described cell cycle functions of the RENT complex can be uncoupled by a dominant mutant allele of CDC14. The independent functions of Net1 link a key event in the cell cycle to nucleolar processes that are fundamental to cell growth.


Assuntos
Nucléolo Celular/fisiologia , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Proteínas Tirosina Fosfatases , RNA Polimerase I/metabolismo , Ribonucleoproteínas Nucleolares Pequenas , Proteínas de Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Transcrição Gênica , Animais , Northern Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Fenótipo , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/fisiologia , Sirtuína 2 , Sirtuínas , Esporos Fúngicos/fisiologia , Temperatura , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
BMC Biochem ; 2: 7, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11504566

RESUMO

BACKGROUND: The function of the fission yeast cullins Pcu1p and Pcu4p requires modification by the ubiquitin-related peptide Ned8p. A recent report by Lyapina et al. shows that the COP9/signalosome (CSN), a multifunctional eight subunit complex, regulates Ned8p modification of Pcu1p. Disruption of caa1/csn1, which encodes subunit 1 of the putative S. pombe CSN, results in accumulation of Pcu1p exclusively in the modified form. However, it remained unclear whether this reflects global control of all cullins by the entire CSN complex. RESULTS: We demonstrate that multiple CSN subunits control Ned8p modification of Pcu3p, another fission yeast cullin, which, in complex with the RING domain protein Pip1p, forms a ubiquitin ligase that functions in cellular stress response. Pcu3p is modified by Ned8p on Lys 729 and accumulates exclusively in the neddylated form in cells lacking the CSN subunits 1, 3, 4, and 5. These CSN subunits co-elute with Pcu3p in gel filtration fractions corresponding to approximately 550 kDa and specifically bind both native and Ned8p-modified Pcu3p in vivo. While CSN does not influence the subcellular localization of Pcu3p, Pcu3p-associated in vitro ubiquitin ligase activity is stimulated in the absence of CSN. CONCLUSIONS: Taken together, our data suggest that CSN is a global regulator of Ned8p modification of multiple cullins and potentially other proteins involved in cellular regulation.


Assuntos
Ligases/metabolismo , Proteínas/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/metabolismo , Ubiquitinas/metabolismo , Complexo do Signalossomo COP9 , Sequência Conservada , Cisteína/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Teste de Complementação Genética , Ligases/análise , Ligases/química , Lisina/metabolismo , Substâncias Macromoleculares , Complexos Multiproteicos , Mutação , Peptídeo Hidrolases , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética
7.
Proc Natl Acad Sci U S A ; 98(15): 8554-9, 2001 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-11438690

RESUMO

The intracellular levels of many proteins are regulated by ubiquitin-dependent proteolysis. One of the best-characterized enzymes that catalyzes the attachment of ubiquitin to proteins is a ubiquitin ligase complex, Skp1-Cullin-F box complex containing Hrt1 (SCF). We sought to artificially target a protein to the SCF complex for ubiquitination and degradation. To this end, we tested methionine aminopeptidase-2 (MetAP-2), which covalently binds the angiogenesis inhibitor ovalicin. A chimeric compound, protein-targeting chimeric molecule 1 (Protac-1), was synthesized to recruit MetAP-2 to SCF. One domain of Protac-1 contains the I kappa B alpha phosphopeptide that is recognized by the F-box protein beta-TRCP, whereas the other domain is composed of ovalicin. We show that MetAP-2 can be tethered to SCF(beta-TRCP), ubiquitinated, and degraded in a Protac-1-dependent manner. In the future, this approach may be useful for conditional inactivation of proteins, and for targeting disease-causing proteins for destruction.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas I-kappa B , Metaloendopeptidases/metabolismo , Peptídeo Sintases/metabolismo , Ubiquitinas/metabolismo , Animais , Extratos Celulares , Linhagem Celular Transformada , Humanos , Inibidor de NF-kappaB alfa , Óvulo/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ligases SKP Culina F-Box , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 98(13): 7325-30, 2001 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-11404483

RESUMO

Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2-Mob1, and Dbf2(S374A/T544A)-Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Clonagem Molecular , Ativação Enzimática , Proteínas Fúngicas/metabolismo , Cinética , Mitose , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
9.
Science ; 292(5520): 1379-82, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11337587

RESUMO

The COP9 signalosome is an evolutionary conserved multiprotein complex of unknown function that acts as a negative regulator of photomorphogenic seedling development in Arabidopsis. Here, we show that plants with reduced COP9 signalosome levels had decreased auxin response similar to loss-of-function mutants of the E3 ubiquitin ligase SCFTIR1. Furthermore, we found that the COP9 signalosome and SCFTIR1 interacted in vivo and that the COP9 signalosome was required for efficient degradation of PSIAA6, a candidate substrate of SCFTIR1. Thus, the COP9 signalosome may play an important role in mediating E3 ubiquitin ligase-mediated responses.


Assuntos
Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Ligases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brassica , Complexo do Signalossomo COP9 , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reporter/genética , Ligases/genética , Complexos Multiproteicos , Mutação/genética , Pisum sativum , Peptídeo Hidrolases , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Subunidades Proteicas , Proteínas/genética , RNA Antissenso/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases
10.
Science ; 292(5520): 1382-5, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11337588

RESUMO

SCF ubiquitin ligases control various processes by marking regulatory proteins for ubiquitin-dependent proteolysis. To illuminate how SCF complexes are regulated, we sought proteins that interact with the human SCF component CUL1. The COP9 signalosome (CSN), a suppressor of plant photomorphogenesis, associated with multiple cullins and promoted cleavage of the ubiquitin-like protein NEDD8 from Schizosaccharomyces pombe CUL1 in vivo and in vitro. Multiple NEDD8-modified proteins uniquely accumulated in CSN-deficient S. pombe cells. We propose that the broad spectrum of activities previously attributed to CSN subunits--including repression of photomorphogenesis, activation of JUN, and activation of p27 nuclear export--underscores the importance of dynamic cycles of NEDD8 attachment and removal in biological regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Proteínas/metabolismo , Ubiquitinas/metabolismo , Células 3T3 , Animais , Western Blotting , Complexo do Signalossomo COP9 , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Espectrometria de Massas , Camundongos , Complexos Multiproteicos , Mutação/genética , Proteína NEDD8 , Peptídeo Hidrolases , Peptídeo Sintases/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ligases SKP Culina F-Box , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Especificidade por Substrato , Suínos , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinas/genética
11.
Genes Dev ; 15(9): 1078-92, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11331604

RESUMO

The budding yeast transcriptional activator Gcn4 is rapidly degraded in an SCF(Cdc4)-dependent manner in vivo. Upon fractionation of yeast extracts to identify factors that mediate Gcn4 ubiquitination, we found that Srb10 phosphorylates Gcn4 and thereby marks it for recognition by SCF(Cdc4) ubiquitin ligase. Srb10 is a physiological regulator of Gcn4 stability because both phosphorylation and turnover of Gcn4 are diminished in srb10 mutants. Gcn4 is almost completely stabilized in srb10Delta pho85Delta cells, or upon mutation of all Srb10 phosphorylation sites within Gcn4, suggesting that the Pho85 and Srb10 cyclin-dependent kinases (CDKs) conspire to limit the accumulation of Gcn4. The multistress response transcriptional regulator Msn2 is also a substrate for Srb10 and is hyperphosphorylated in an Srb10-dependent manner upon heat-stress-induced translocation into the nucleus. Whereas Msn2 is cytoplasmic in resting wild-type cells, its nuclear exclusion is partially compromised in srb10 mutant cells. Srb10 has been shown to repress a subset of genes in vivo, and has been proposed to inhibit transcription via phosphorylation of the C-terminal domain of RNA polymerase II. We propose that Srb10 also inhibits gene expression by promoting the rapid degradation or nuclear export of specific transcription factors. Simultaneous down-regulation of both transcriptional regulatory proteins and RNA polymerase may enhance the potency and specificity of transcriptional inhibition by Srb10.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Núcleo Celular/metabolismo , Meios de Cultura , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Mutação , Peptídeo Sintases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas , RNA Polimerase II/metabolismo , Proteínas Ligases SKP Culina F-Box , Transativadores/metabolismo , Ubiquitinas/metabolismo , Leveduras/genética , Leveduras/metabolismo
12.
Mol Cell Biol ; 21(9): 3105-17, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11287615

RESUMO

Skp1p-cullin-F-box protein (SCF) complexes are ubiquitin-ligases composed of a core complex including Skp1p, Cdc53p, Hrt1p, the E2 enzyme Cdc34p, and one of multiple F-box proteins which are thought to provide substrate specificity to the complex. Here we show that the F-box protein Rcy1p is required for recycling of the v-SNARE Snc1p in Saccharomyces cerevisiae. Rcy1p localized to areas of polarized growth, and this polarized localization required its CAAX box and an intact actin cytoskeleton. Rcy1p interacted with Skp1p in vivo in an F-box-dependent manner, and both deletion of its F box and loss of Skp1p function impaired recycling. In contrast, cells deficient in Cdc53p, Hrt1p, or Cdc34p did not exhibit recycling defects. Unlike the case for F-box proteins that are known to participate in SCF complexes, degradation of Rcy1p required neither its F box nor functional 26S proteasomes or other SCF core subunits. Importantly, Skp1p was the only major partner that copurified with Rcy1p. Our results thus suggest that a complex composed of Rcy1p and Skp1p but not other SCF components may play a direct role in recycling of internalized proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Sintases/metabolismo , Proteínas de Saccharomyces cerevisiae , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas R-SNARE , Proteínas Ligases SKP Culina F-Box , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular
13.
Nat Cell Biol ; 3(4): 384-91, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11283612

RESUMO

SCF ubiquitin ligases are composed of Skp1, Cdc53, Hrt1 and one member of a large family of substrate receptors known as F-box proteins (FBPs). Here we report the identification, using sequential rounds of epitope tagging, affinity purification and mass spectrometry, of 16 Skp1 and Cdc53-associated proteins in budding yeast, including all components of SCF, 9 FBPs, Yjr033 (Rav1) and Ydr202 (Rav2). Rav1, Rav2 and Skp1 form a complex that we have named 'regulator of the (H+)-ATPase of the vacuolar and endosomal membranes' (RAVE), which associates with the V1 domain of the vacuolar membrane (H+)-ATPase (V-ATPase). V-ATPases are conserved throughout eukaryotes, and have been implicated in tumour metastasis and multidrug resistance, and here we show that RAVE promotes glucose-triggered assembly of the V-ATPase holoenzyme. Previous systematic genome-wide two-hybrid screens yielded 17 proteins that interact with Skp1 and Cdc53, only 3 of which overlap with those reported here. Thus, our results provide a distinct view of the interactions that link proteins into a comprehensive cellular network.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Proteínas Fúngicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Proteínas de Ciclo Celular/genética , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Glucose/metabolismo , Holoenzimas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases Associadas a Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
J Biol Chem ; 276(24): 21924-31, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11274204

RESUMO

In the budding yeast Saccharomyces cerevisiae, the multifunctional protein Net1 is implicated in regulating the cell cycle function of the Cdc14 protein phosphatase. Genetic and cell biological data suggest that during interphase and early mitosis Net1 holds Cdc14 within the nucleolus where its activity is suppressed. Upon its transient release from Net1 at late anaphase, active Cdc14 promotes exit from mitosis by dephosphorylating targets in the nucleus and cytoplasm. In this paper we present evidence supporting the proposed role of Net1 in regulating Cdc14 and exit from mitosis. We show that the NH(2)-terminal fragment Net1(1-600) directly binds Cdc14 in vitro and is a highly specific competitive inhibitor of its activity (K(i) = 3 nm) with five different substrates including the physiologic targets Swi5 and Sic1. An analysis of truncation mutants indicates that the Cdc14 binding site is located within a segment of Net1 containing residues 1-341. We propose that Net1 inhibits by occluding the active site of Cdc14 because it acts as a competitive inhibitor, binds to a site located within the catalytic domain (residues 1-374), binds with reduced affinity to a Cdc14 C283S mutant in which an active site Cys is replaced, and is displaced by tungstate, a transition state analog known to bind in the catalytic site of protein-tyrosine phosphatases.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Sítios de Ligação , Proteínas de Ciclo Celular/química , Inibidores Enzimáticos/metabolismo , Cinética , Mitose , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
J Cell Sci ; 114(Pt 7): 1379-86, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11257003

RESUMO

Cytokinesis in budding yeast involves an actomyosin-based ring which assembles in a multistepped fashion during the cell cycle and constricts during cytokinesis. In this report, we have investigated the structural and regulatory events that occur at the onset of cytokinesis. The septins, which form an hour-glass like structure during early stages of the cell cycle, undergo dynamic rearrangements prior to cell division: the hourglass structure splits into two separate rings. The contractile ring, localized between the septin double rings, immediately undergoes contraction. Septin ring splitting is independent of actomyosin ring contraction as it still occurs in mutants where contraction fails. We hypothesize that septin ring splitting may remove a structural barrier for actomyosin ring to contract. Because the Tem1 small GTPase (Tem1p) is required for the completion of mitosis, we investigated its role in regulating septin and actomyosin ring dynamics in the background of the net1-1 mutation, which bypasses the anaphase cell cycle arrest in Tem1-deficient cells. We show that Tem1p plays a specific role in cytokinesis in addition to its function in cell cycle progression. Tem1p is not required for the assembly of the actomyosin ring but controls actomyosin and septin dynamics during cytokinesis.


Assuntos
Actomiosina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas de Saccharomyces cerevisiae , Divisão Celular , Proteínas Fúngicas/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Anal Chem ; 73(3): 393-404, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11217738

RESUMO

A new, multidimensional electrospray MS-based strategy for phosphopeptide mapping is described which eliminates the need to radiolabel protein with 32P or 33P. The approach utilizes two orthogonal MS scanning techniques, both of which are based on the production of phosphopeptide-specific marker ions at m/z 63 and/or 79 in the negative ion mode. These scan methods are combined with liquid chromatography-electrospray mass spectrometry and nanoelectrospray MS/MS to selectively detect and identify phosphopeptides in complex proteolytic digests. Low-abundance, low-stoichiometry phosphorylation sites can be selectively determined in the presence of an excess of nonphosphorylated peptides, even in cases where the signal from the phosphopeptide is indistinguishable from background in the conventional MS scan. The strategy, which has been developed and refined in our laboratory over the past few years, is particularly well suited to phosphoproteins that are phosphorylated to varying degrees of stoichiometry on multiple sites. Sensitivity and selectivity of the method are demonstrated here using model peptides and a commercially available phosphoprotein standard. In addition, the strategy is illustrated by the complete in vitro and in vivo phosphopeptide mapping of Sic1p, a regulator of the G1/S transition in budding yeast.


Assuntos
Mapeamento de Peptídeos/métodos , Fosfopeptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Caseínas/química , Cromatografia Líquida , Dados de Sequência Molecular , Fosforilação
17.
Cell ; 107(7): 819-22, 2001 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11779457

RESUMO

Remarkably, SCF(Cdc4) ubiquitin ligase binds and ubiquitinates Sic1 decorated with six, but not five, phosphates. This numerical wizardry suggests how analog inputs can be rectified to digital outputs. Unraveling the counting mechanism promises to generate new insights into the architecture of protein nanoprocessors.


Assuntos
Proteínas F-Box , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Animais , Proteínas de Ciclo Celular/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes/fisiologia , Proteína 7 com Repetições F-Box-WD , Proteínas Fúngicas/fisiologia , Humanos , Peptídeo Sintases/fisiologia , Fosforilação , Proteínas Ligases SKP Culina F-Box , Transdução de Sinais
18.
EMBO J ; 19(22): 6085-97, 2000 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11080155

RESUMO

Far1 is a bifunctional protein that is required to arrest the cell cycle and establish cell polarity during yeast mating. Here we show that SCF(Cdc4) ubiquitylates Far1 in the nucleus, which in turn targets the multi-ubiquitylated protein to 26S proteasomes most likely located at the nuclear envelope. In response to mating pheromones, a fraction of Far1 was stabilized after its export into the cytoplasm by Ste21/Msn5. Preventing nuclear export destabilized Far1, while conversely cytoplasmic Far1 was stabilized, although the protein was efficiently phosphorylated in a Cdc28-Cln-dependent manner. The core SCF subunits Cdc53, Hrt1 and Skp1 were distributed in the nucleus and the cytoplasm, whereas the F-box protein Cdc4 was exclusively nuclear. A cytoplasmic form of Cdc4 was unable to complement the growth defect of cdc4-1 cells, but it was sufficient to degrade Far1 in the cytoplasm. Our results illustrate the importance of subcellular localization of F-box proteins, and provide an example of how an extracellular signal regulates protein stability at the level of substrate localization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box , Proteínas Fúngicas/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Ciclinas/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Meia-Vida , Leupeptinas/farmacologia , Dados de Sequência Molecular , Membrana Nuclear/metabolismo , Sinais de Localização Nuclear , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo
19.
Mol Biol Cell ; 11(10): 3425-39, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11029046

RESUMO

Ubiquitin-dependent proteolysis is catalyzed by the 26S proteasome, a dynamic complex of 32 different proteins whose mode of assembly and mechanism of action are poorly understood, in part due to the difficulties encountered in purifying the intact complex. Here we describe a one-step affinity method for purifying intact 26S proteasomes, 19S regulatory caps, and 20S core particles from budding yeast cells. Affinity-purified 26S proteasomes hydrolyze both model peptides and the ubiquitinated Cdk inhibitor Sic1. Affinity purifications performed in the absence of ATP or presence of the poorly hydrolyzable analog ATP-gamma-S unexpectedly revealed that a large number of proteins, including subunits of the skp1-cullin-F-box protein ligase (SCF) and anaphase-promoting complex (APC) ubiquitin ligases, copurify with the 19S cap. To identify these proteasome-interacting proteins, we used a recently developed method that enables the direct analysis of the composition of large protein complexes (DALPC) by mass spectrometry. Using DALPC, we identified more than 24 putative proteasome-interacting proteins, including Ylr421c (Daq1), which we demonstrate to be a new subunit of the budding yeast 19S cap, and Ygr232w (Nas6), which is homologous to a subunit of the mammalian 19S cap (PA700 complex). Additional PIPs include the heat shock proteins Hsp70 and Hsp82, the deubiquitinating enzyme Ubp6, and proteins involved in transcriptional control, mitosis, tubulin assembly, RNA metabolism, and signal transduction. Our data demonstrate that nucleotide hydrolysis modulates the association of many proteins with the 26S proteasome, and validate DALPC as a powerful tool for rapidly identifying stoichiometric and substoichiometric components of large protein assemblies.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Proteínas Fúngicas/metabolismo , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Cromatografia de Afinidade , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Genótipo , Cinética , Ligases/metabolismo , Espectrometria de Massas , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Subunidades Proteicas , Proteoma/química , Proteoma/isolamento & purificação , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo
20.
Mol Cell Biol ; 20(16): 5858-64, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10913169

RESUMO

p13(suc1) (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G(1) cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G(1) cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G(1) cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G(1) cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G(1) phase in budding yeast.


Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Fase G1 , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Ativação Enzimática , Ligação Proteica , Saccharomycetales/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...