Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 72(4): 309-318, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34870569

RESUMO

Concentrations of per- and poly-fluoroalkyl substances (PFAS) present in wastewater treatment biosolids are a growing concern. Pyrolysis is a thermal treatment technology for biosolids that can produce a useful biochar product with reduced levels of PFAS and other contaminants. In August 2020, a limited-scope study investigated target PFAS removal of a commercial pyrolysis system processing biosolid with the analysis of 41 target PFAS compounds in biosolids and biochar performed by two independent laboratories. The concentrations of 21 detected target compounds in the input biosolids ranged between approximately 2 µg/kg and 85 µg/kg. No PFAS compounds were detected in the biochar. The PFAS concentrations in the biochar were assumed to equal the compounds' minimum detection limits (MDLs). The pyrolysis system's target PFAS removal efficiencies (REs) were estimated to range between >81.3% and >99.9% (mean >97.4%) with the lowest REs being associated with the lowest detected PFAS concentrations and the highest MDLs. No information on non-target PFAS compounds in influent or effluent media or products of incomplete combustion was considered. Selected gaseous emissions were measured by Fourier transform infrared spectroscopy and gas chromatography time-of-flight mass spectrometry to provide additional information on air emissions after process controls. This limited-scope study indicated that additional research to further understand this process is warranted.Implications: Development of alternative approaches to manage PFAS-impacted biosolids is of emerging international importance. A commercially operating biosolid pyrolysis process was shown to lower target PFAS levels in produced biochar. Additional research is warranted to understand all potential PFAS transformation emission routes and optimal air pollution emissions control strategies for this technology class.


Assuntos
Fluorocarbonos , Purificação da Água , Biossólidos , Fluorocarbonos/análise , Projetos Piloto , Pirólise
2.
Environ Sci Technol ; 54(18): 11506-11514, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786569

RESUMO

Optical gas imaging (OGI) is a commonly utilized leak detection method in the upstream and midstream sectors of the U.S. natural gas industry. This study characterized the detection efficacy of OGI surveyors, using their own cameras and protocols, with controlled releases in an 8-acre outdoor facility that closely resembles upstream natural gas field operations. Professional surveyors from 16 oil and gas companies and 8 regulatory agencies participated, completing 488 tests over a 10 month period. Detection rates were significantly lower than prior studies focused on camera performance. The leak size required to achieve a 90% probability-of-detection in this study is an order-of-magnitude larger than prior studies. Study results indicate that OGI survey experience significantly impacts leak detection rate: Surveyors from operators/contractors who had surveyed more than 551 sites prior to testing detected 1.7 (1.5-1.8) times more leaks than surveyors who had completed fewer surveys. Highly experienced surveyors adjust their survey speed, examine components from multiple viewpoints, and make other adjustments that improve their leak detection rate, indicating that modifications of survey protocols and targeted training could improve leak detection rates overall.


Assuntos
Metano , Gás Natural , Limite de Detecção , Campos de Petróleo e Gás
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...