Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(45): 50543-50556, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331290

RESUMO

The COVID-19 pandemic has revealed the importance of the detection of airborne pathogens. Here, we present composite air filters featuring a bioinspired liquid coating that facilitates the removal of captured aerosolized bacteria and viruses for further analysis. We tested three types of air filters: commercial polytetrafluoroethylene (PTFE), which is well known for creating stable liquid coatings, commercial high-efficiency particulate air (HEPA) filters, which are widely used, and in-house-manufactured cellulose nanofiber mats (CNFMs), which are made from sustainable materials. All filters were coated with omniphobic fluorinated liquid to maximize the release of pathogens. We found that coating both the PTFE and HEPA filters with liquid improved the rate at which Escherichia coli was recovered using a physical removal process compared to uncoated controls. Notably, the coated HEPA filters also increased the total number of recovered cells by 57%. Coating the CNFM filters did not improve either the rate of release or the total number of captured cells. The most promising materials, the liquid-coated HEPA, filters were then evaluated for their ability to facilitate the removal of pathogenic viruses via a chemical removal process. Recovery of infectious JC polyomavirus, a nonenveloped virus that attacks the central nervous system, was increased by 92% over uncoated controls; however, there was no significant difference in the total amount of genomic material recovered compared to that of controls. In contrast, significantly more genomic material was recovered for SARS-CoV-2, the airborne, enveloped virus, which causes COVID-19, from liquid-coated filters. Although the amount of infectious SARS-CoV-2 recovered was 58% higher, these results were not significantly different from uncoated filters due to high variability. These results suggest that the efficient recovery of airborne pathogens from liquid-coated filters could improve air sampling efforts, enhancing biosurveillance and global pathogen early warning.


Assuntos
Filtros de Ar , COVID-19 , Vírus , Humanos , Pandemias , SARS-CoV-2 , COVID-19/prevenção & controle , Bactérias , Poeira , Politetrafluoretileno
2.
Vector Borne Zoonotic Dis ; 21(6): 406-412, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33661033

RESUMO

The blacklegged tick, Ixodes scapularis, is the primary vector of multiple human pathogens, including the causative agents of Lyme disease, anaplasmosis, and babesiosis. Both I. scapularis and its associated pathogens have expanded their geographic range throughout the northeastern Unites States and into northern New England. Through this study, we present an updated distribution of I. scapularis in Maine and report the first statewide passive surveillance infection and coinfection prevalence of Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti within the state's I. scapularis population. In 2019, we collected 2016 ticks through a passive surveillance program, in which Maine residents submitted tick samples for identification and/or pathogen testing. We used a single multiplex quantitative PCR assay to detect tickborne pathogens in 1901 tick samples. At the state level, we found that Bo. burgdorferi and A. phagocytophilum infection rates of adults (42.4%, 11.1%) were nearly double that of nymphs (26.9%, 6.7%), whereas B. microti prevalence was similar for both adults (6.5%) and nymphs (5.2%). Spatially, we found an uneven distribution of both tick activity and pathogen prevalence, with both increasing on a north to south gradient. We also noted a potential association between the ratio of adult to nymphal ticks and the incidence of tickborne disease in human populations, with counties that exhibit high rates of human disease also maintaining low adult to nymph ratios.


Assuntos
Anaplasma phagocytophilum , Babesia microti , Borrelia burgdorferi , Ixodes , Anaplasma phagocytophilum/genética , Animais , Babesia microti/genética , Borrelia burgdorferi/genética , Maine/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...