Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1730: 465086, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38941797

RESUMO

Polycyclic aromatic hydrocarbons are air pollutants that affect the human health and the environment, and their accurate determination in outdoor and indoor environments is important. This study presents a methodology for sampling and analysis of semi-volatile compounds in ambient air with emphasis on the polycyclic aromatic hydrocarbons, collected with low-volume pumps (4.8 m3) in unconditioned solid phase extraction cartridges (Isolute ENV+). Sampling in SPE cartridges with low-volume pumps allows the collection of both gas and particulate phase compounds in indoor as well as outdoor environments, and reduces the number of extraction steps required as well as the solvent volume used for extraction. Analysis of the 16 US-EPA priority PAHs after extraction was conducted by GC-MS/MS with recoveries of the PAHs 40-118 %. No breakthrough was detected during sampling. Moreover, the methodology includes storage test to assess the conservation of PAHs in the SPE cartridges in heat-sealable Kapac bags; simulating transport from sampling sites to laboratory, and storage under room, cold and frozen conditions at different time-intervals, up to 3 months after sampling. The results showed that concentration levels remained constant across various storage time intervals and temperatures, with naphthalene and acenaphthylene being the only exceptions, showing high blank levels for the first and losses at room temperature for the later. The method quantification limits, including sampling, storage and GC-MS/MS analysis ranged from 2000 pg m-3 for naphthalene and 300 pg m-3 for phenanthrene to less than 20.0 pg m-3 for higher molecular and less volatile PAHs, such as benzo[a]pyrene (LOQ = 8.0 pg m-3). The feasibility of the method was tested by sampling indoors under urban background air conditions, showing individual PAH concentrations 4 to 10 times higher than their method quantification limits.

2.
Toxicol In Vitro ; 96: 105771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182034

RESUMO

The use of fetal bovine serum (FBS) in cell culture is being questioned for scientific and ethical reasons, prompting the exploration of alternative approaches. Nevertheless, the influence of FBS on cell functioning, especially in fish cells, has not been comprehensively examined. This study aims to evaluate the impact of FBS on the lipidome of PLHC-1 spheroids and investigate cellular and molecular responses to plastic additives in the presence/absence of FBS. Lipidomic analyses were conducted on PLHC-1 cell spheroids using liquid chromatography coupled with a high-resolution quadrupole time-of-flight mass spectrometer (HRMS-QToF). The removal of FBS from the culture medium for 24 h significantly changed the lipid profile of spheroids, resulting in a depletion of cholesterol esters (CEs), phosphatidylcholines (PCs) and lyso-phosphatidylcholines (LPCs), while ceramides and certain glycerophospholipids slightly increased. Additionally, the exclusion of FBS from the medium led to increased cytotoxicity caused by a mixture of plastic additives and increased lipidomic alterations, including an elevation of ceramides. This study emphasizes the protective role of serum components in fish liver spheroids against a mixture of plastic additives and underscores the importance of considering exposure conditions when studying metabolomic and lipidomic responses to toxicants.


Assuntos
Lipidômica , Soroalbumina Bovina , Animais , Técnicas de Cultura de Células , Fosfatidilcolinas , Ceramidas
3.
Ecotoxicol Environ Saf ; 259: 115016, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196525

RESUMO

Fish liver cell lines are valuable tools to understand the toxicity of chemicals in aquatic vertebrates. While conventional 2D cell cultures grown in monolayers are well established, they fail to emulate toxic gradients and cellular functions as in in-vivo conditions. To overcome these limitations, this work focuses on the development of Poeciliopsis lucida (PLHC-1) spheroids as a testing platform to evaluate the toxicity of a mixture of plastic additives. The growth of spheroids was monitored over a period of 30 days, and spheroids 2-8 days old and sized between 150 and 250 µm were considered optimal for conducting toxicity tests due to their excellent viability and metabolic activity. Eight-day-old spheroids were selected for lipidomic characterization. Compared to 2D-cells, the lipidome of spheroids was relatively enriched in highly unsaturated phosphatidylcholines (PCs), sphingosines (SPBs), sphingomyelins (SMs) and cholesterol esters (CEs). When exposed to a mixture of plastic additives, spheroids were less responsive in terms of decreased cell viability and generation of reactive oxygen species (ROS), but were more sensitive than cells growing in monolayers for lipidomic responses. The lipid profile of 3D-spheroids was similar to a liver-like phenotype and it was strongly modulated by exposure to plastic additives. The development of PLHC-1 spheroids represents an important step towards the application of more realistic in-vitro methods in aquatic toxicity studies.


Assuntos
Hepatócitos , Fígado , Animais , Linhagem Celular , Técnicas de Cultura de Células/métodos , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...