Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(2): 326-342, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874117

RESUMO

Monosodium glutamate (MSG) is a controversial food additive reported to cause negative effects on public health. Adipose stem cells (ASCs) and their derived vesicles (MVs) represent a promising cure for human diseases. This work was planned to compare the therapeutic effects of adipose stem cells and microvesicles in MSG-induced cerebellar damage. Forty adult healthy male Wister rats were equally divided into four groups: Group I (control group), group II (MSG-treated), group III (MSG/ASCs-treated), and group IV (MSG/MVs-treated). Motor behaviour of rats was assessed. Characterization of ASCs and MVs was done by flow cytometry. The cerebellum was processed for light and electron microscopic studies, and immunohistochemical localization of PCNA and GFAP. Morphometry was done for the number of Purkinje cells in H&E-stained sections, area per cent of GFAP immune reactivity and number of positive PCNA cells. Our results showed MSG-induced deterioration in the motor part. Moreover, MSG increases oxidant and apoptotic with decreases of antioxidant biomarkers. Structural changes in the cerebellar cortex as degeneration of nerve cells and gliosis were detected. There were also a decrease in the number of Purkinje cells, an increase in the area per cent of GFAP immune reactivity and a decrease in the number of positive PCNA cells, as compared to the control. Rats treated with ASCs showed marked functional and structural improvement in comparison with MV-treated rats. Thus, both ASCs and MVs had therapeutic potential for MSG-induced cerebellar damage with better results in case of ASCs.


Assuntos
Cerebelo , Glutamato de Sódio , Tecido Adiposo , Animais , Masculino , Ratos , Ratos Wistar , Células-Tronco
2.
PeerJ ; 9: e10525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604161

RESUMO

BACKGROUND: Antibiotic resistance is a growing problem that can be ameliorated by the discovery of novel drug candidates. Bacterial associates are often the source of pharmaceutically active natural products isolated from marine invertebrates, and thus, important targets for drug discovery. While the microbiomes of many marine organisms have been extensively studied, microbial communities from chemically-rich nudibranchs, marine invertebrates that often possess chemical defences, are relatively unknown. METHODS: We applied both culture-dependent and independent approaches to better understand the biochemical potential of microbial communities associated with nudibranchs. Gram-positive microorganisms isolated from nudibranchs collected in the Red Sea were screened for antibacterial and antitumor activity. To assess their biochemical potential, the isolates were screened for the presence of natural product biosynthetic gene clusters, including polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, using PCR. The microbiomes of the nudibranchs were investigated by high-throughput sequencing of 16S rRNA amplicons. RESULTS: In screens against five model microorganisms, 51% of extracts displayed antimicrobial activity against more than one organism, and 19% exhibited antitumor activity against Ehrlich's ascites carcinoma. Sixty-four percent of isolates contained PKS and NRPS genes, suggesting their genomes contain gene clusters for natural product biosynthesis. Thirty-five percent were positive for more than one class of biosynthetic gene. These strains were identified as belonging to the Firmicutes and Actinobacteria phyla via 16S rRNA gene sequencing. In addition, 16S rRNA community amplicon sequencing revealed all bacterial isolates were present in the uncultured host-associated microbiome, although they were a very small percentage of the total community. Taken together, these results indicate that bacteria associated with marine nudibranchs are potentially a rich source of bioactive compounds and natural product biosynthetic genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...