Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Joint J ; 103-B(9): 1505-1513, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34465147

RESUMO

AIMS: Anterior cruciate ligament (ACL) rupture commonly leads to post-traumatic osteoarthritis, regardless of surgical reconstruction. This study uses standing MRI to investigate changes in contact area, contact centroid location, and tibiofemoral alignment between ACL-injured knees and healthy controls, to examine the effect of ACL reconstruction on these parameters. METHODS: An upright, open MRI was used to directly measure tibiofemoral contact area, centroid location, and alignment in 18 individuals with unilateral ACL rupture within the last five years. Eight participants had been treated nonoperatively and ten had ACL reconstruction performed within one year of injury. All participants were high-functioning and had returned to sport or recreational activities. Healthy contralateral knees served as controls. Participants were imaged in a standing posture with knees fully extended. RESULTS: Participants' mean age was 28.4 years (SD 7.3), the mean time since injury was 2.7 years (SD 1.6), and the mean International Knee Documentation Subjective Knee Form score was 84.4 (SD 13.5). ACL injury was associated with a 10% increase (p = 0.001) in contact area, controlling for compartment, sex, posture, age, body mass, and time since injury. ACL injury was associated with a 5.2% more posteriorly translated medial centroid (p = 0.001), equivalent to a 2.6 mm posterior translation on a representative tibia with mean posteroanterior width of 49.4 mm. Relative to the femur, the tibiae of ACL ruptured knees were 2.3 mm more anteriorly translated (p = 0.003) and 2.6° less externally rotated (p = 0.010) than healthy controls. ACL reconstruction was not associated with an improvement in any measure. CONCLUSION: ACL rupture was associated with an increased contact area, posteriorly translated medial centroid, anterior tibial translation, and reduced tibial external rotation in full extension. These changes were present 2.7 years post-injury regardless of ACL reconstruction status. Cite this article: Bone Joint J 2021;103-B(9):1505-1513.


Assuntos
Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/terapia , Fêmur/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tíbia/diagnóstico por imagem , Adulto , Reconstrução do Ligamento Cruzado Anterior , Fenômenos Biomecânicos , Feminino , Fêmur/cirurgia , Humanos , Masculino , Rotação , Posição Ortostática , Tíbia/cirurgia , Suporte de Carga
2.
Artigo em Inglês | MEDLINE | ID: mdl-22974275

RESUMO

Cells in the intervertebral disc, as in other connective tissues including tendon, ligament and bone, form interconnected cellular networks that are linked via functional gap junctions. These cellular networks may be necessary to affect a coordinated response to mechanical and environmental stimuli. Using confocal microscopy with fluorescence recovery after photobleaching methods, we explored the in situ strain environment of the outer annulus of an intact bovine disc and the effect of high-level flexion on gap junction signalling. The in situ strain environment in the extracellular matrix of the outer annulus under high flexion load was observed to be non-uniform with the extensive cellular processes remaining crimped sometimes at flexion angles greater than 25°. A significant transient disruption of intercellular communication via functional gap junctions was measured after 10 and 20 min under high flexion load. This study illustrates that in healthy annulus fibrosus tissue, high mechanical loads can impede the functioning of the gap junctions. Future studies will explore more complex loading conditions to determine whether losses in intercellular communication can be permanent and whether gap junctions in aged and degenerated tissues become more susceptible to load. The current research suggests that cellular structures such as gap junctions and intercellular networks, as well as other cell-cell and cell-matrix interconnections, need to be considered in computational models in order to fully understand how macroscale mechanical signals are transmitted across scales to the microscale and ultimately into a cellular biosynthetic response in collagenous tissues.


Assuntos
Comunicação Celular , Junções Comunicantes/fisiologia , Disco Intervertebral/fisiologia , Animais , Bovinos , Matriz Extracelular/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Disco Intervertebral/citologia , Microscopia Confocal , Estresse Mecânico
3.
J Mech Behav Biomed Mater ; 25: 11-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23726921

RESUMO

Articular cartilage forms the articulating surface of long bones and facilitates energy dissipation upon loading as well as joint lubrication and wear resistance. In normal cartilage, boundary lubrication between thin films at the cartilage surface reduces friction in the absence of interstitial fluid pressurization and fluid film lubrication by synovial fluid. Inadequate boundary lubrication is associated with degenerative joint conditions such as osteoarthritis (OA), but relations between OA and surface friction, lubrication and wear in boundary lubrication are not well defined. The purpose of the present study was to measure microscale boundary mode friction of the articular cartilage surface in an in vivo experimental model to better understand changes in cartilage surface friction in early OA. Cartilage friction was measured on the articular surface by atomic force microscopy (AFM) under applied loads ranging from 0.5 to 5 µN. Microscale AFM friction analyses revealed depth dependent changes within the top-most few microns of the cartilage surface in this model of early OA. A significant increase of nearly 50% was observed in the mean engineering friction coefficient for OA cartilage at the 0.5 µN load level; no significant differences in friction coefficients were found under higher applied loads. Changes in cartilage surface morphology observed by scanning electron microscopy included cracking and roughening of the surface indicative of disruption and wear accompanied by an apparent disintegration of the thin surface lamina from the underlying matrix. Immunohistochemical staining of lubricin - an important cartilage surface boundary lubricant - did not reveal differences in spatial distribution near the cartilage surface in OA compared to controls. The increase in friction at the 0.5 µN force level is interpreted to reflect changes in the interfacial mechanics of the thin surface lamina of articular cartilage: increased friction implies reduced lubrication efficiency and a higher potential for cartilage surface wear in OA. The effects of mechanical or biochemical changes or loss of the thin surface lamina on the remaining tissue with respect to OA progression is unknown and requires further study, but preservation of the surface lamina seems an important early target for the maintenance of cartilage health and prevention of OA.


Assuntos
Cartilagem Articular/fisiopatologia , Cartilagem Articular/ultraestrutura , Microscopia de Força Atômica/métodos , Osteoartrite do Quadril/patologia , Osteoartrite do Quadril/fisiopatologia , Suporte de Carga , Animais , Cães , Fricção , Lubrificação , Técnicas de Cultura de Órgãos , Estresse Mecânico , Propriedades de Superfície
4.
J Biomech ; 43(16): 3091-8, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20817164

RESUMO

The functional integrity of the articulating cartilage surface is a critical determinant of joint health. Although a variety of techniques exist to characterize the structural changes in the tissue with osteoarthritis (OA), some with extremely high resolution, most lack the ability to detect and monitor the functional changes that accompany the structural deterioration of this essential bearing surface. Atomic force microscopy (AFM) enables the acquisition of both structural and mechanical properties of the articular cartilage surface, with up to nanoscale resolution, making it particularly useful for evaluating the functional behavior of the macromolecular network forming the cartilage surface, which disintegrates in OA. In the present study, AFM was applied to the articular cartilage surfaces from six pairs of canine knee joints with post-traumatic OA. Microstructure (RMS roughness) and micromechanics (dynamic indentation modulus, E* of medial femoral condyle cartilages were compared between contralateral controls and cruciate-transected knee joints, which develop early signs of OA by three months after surgery. Results reveal a significant increase in RMS roughness and a significant four-fold decrease in E* in cartilages from cruciate-transected joints versus contralateral controls. Compared to previous reports of changes in bulk mechanics, AFM was considerably more sensitive at detecting early cartilage changes due to cruciate-deficiency. The use of AFM in this study provides important new information on early changes in the natural history of OA because of its ability to sensitively detect and measure local structural and functional changes of the articular cartilage surface, the presumptive site of osteoarthritic initiation.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Cães , Módulo de Elasticidade , Técnicas In Vitro , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura , Osteoartrite/etiologia , Propriedades de Superfície
5.
J Biomech ; 43(11): 2141-8, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20478561

RESUMO

A detailed understanding of the anatomical and mechanical environment in the intervertebral disc at the scale of the cell is necessary for the design of tissue engineering repair strategies and to elucidate the role of mechanical factors in pathology. The objective of this study was to measure and compare the macroscale to microscale strains in the outer annulus fibrosus in various cellular regions of intact discs over a range of applied flexion. Macroscale strains were measured on the annulus fibrosus surface, and contrasted to in situ microscale strains using novel confocal microscopy techniques for dual labeling of the cell and the extracellular matrix. Fiber oriented surface strains were significantly higher than in situ fiber strains, which implies a mechanism of load redistribution that minimizes strain along the fibers. Non-uniformity of the strains and matrix distortion occurred immediately and most interestingly varied little with increase in flexion (3-16 degrees), suggesting that inter-fiber shear is important in the initial stages of strain redistribution. Fiber oriented intercellular strains were significantly larger and compressive compared to in situ strains in other regions of the extracellular matrix indicating that the mechanical environment in this region may be unique. Further examination of the structural morphology in this pericellular region is needed to fully understand the pathway of strain transfer from the tissue to the cell. This study provides new knowledge on the complex in situ micro-mechanical environment of the annulus fibrosus that is essential to understanding the mechanobiological behavior of this tissue.


Assuntos
Matriz Extracelular/fisiologia , Disco Intervertebral/fisiologia , Modelos Biológicos , Animais , Bovinos , Força Compressiva/fisiologia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Matriz Extracelular/ultraestrutura , Técnicas In Vitro , Disco Intervertebral/citologia , Masculino , Estresse Mecânico , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...