Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(10): 6991-7003, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38716702

RESUMO

We report an efficient procedure to carry out palladium-catalyzed Miyaura borylation reactions of (hetero)aromatic halides and triflates in choline chloride (ChCl)-based deep eutectic solvents (DESs). The procedure employs bis(pinacolato)diboron as a boron source and a catalyst prepared in situ from readily available Pd2(dba)3 and the phosphine ligand XPhos. Reactions proceed well in different ChCl-based DESs, among which the best results were provided by environmentally friendly and biodegradable mixtures with glycerol and glucose. The reaction tolerates both EDG and EWG substituents on the substrates and can be run on different halides (chloride, bromide, iodide) and pseudohalides (triflate). Furthermore, for several substrates, the catalyst loading can be reduced to 1 mol % Pd (0.5% mol Pd2(dba)3) without compromising the reaction yield. Moreover, we show that the Miyaura borylation protocol in DES can be combined with a subsequent Suzuki-Miyaura cross-coupling reaction in a one-pot procedure, allowing access to various biaryl products and demonstrating its synthetic utility by preparing the precursors of two compounds with reported applications in the photovoltaics sector. Finally, two green metrics (E-factor and EcoScale) of the new one-pot procedure in DES were calculated and compared with literature values to assess the potential advantages in terms of waste reduction, safety, and energy consumption.

2.
Materials (Basel) ; 16(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068086

RESUMO

Among the emerging photovoltaic (PV) technologies, Dye-Sensitized Solar Cells (DSSCs) appear especially interesting in view of their potential for unconventional PV applications. In particular, DSSCs have been proven to provide excellent performances under indoor illumination, opening the way to their use in the field of low-power devices, such as wearable electronics and wireless sensor networks, including those relevant for application to the rapidly growing Internet of Things technology. Considering the low intensity of indoor light sources, efficient light capture constitutes a pivotal factor in optimizing cell efficiency. Consequently, the development of novel dyes exhibiting intense absorption within the visible range and light-harvesting properties well-matched with the emission spectra of the various light sources becomes indispensable. In this review, we will discuss the current state-of-the-art in the design, synthesis, and application of organic dyes as sensitizers for indoor DSSCs, focusing on the most recent results. We will start by examining the various classes of individual dyes reported to date for this application, organized by their structural features, highlighting their strengths and weaknesses. On the basis of this discussion, we will then draft some potential guidelines in an effort to help the design of this kind of sensitizer. Subsequently, we will describe some alternative approaches investigated to improve the light-harvesting properties of the cells, such as the co-sensitization strategy and the use of concerted companion dyes. Finally, the issue of measurement standardization will be introduced, and some considerations regarding the proper characterization methods of indoor PV systems and their differences compared to (simulated) outdoor conditions will be provided.

3.
Phys Chem Chem Phys ; 24(24): 14993-15002, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35687061

RESUMO

Recently, great research efforts have been devoted to perovskite solar cells (PSCs) leading to sunlight-to-power conversion efficiencies above 25%. However, several barriers still hinder the full deployment of these devices. Critical issues are related to PCE stability and device lifetimes, which could be improved by targeted engineering of the hole transport material (HTM). Indeed, the HTM is not only responsible for transporting holes and preventing direct contact between the photo-active perovskite and the charge collector layer, but it plays important structural and protective roles too. As alternatives to the widely used yet expensive and unstable Spiro-OMeTAD, organic HTMs based on triphenylamine (TPA) and phenothiazine (PTZ) moieties have been proposed. However, their performances in PSC devices, and in particular their interfacial properties with the most popular methylammonium lead iodide perovskite (MAPI) still need investigations to be fully determined. In this framework, here we report a first-principles study on the structural and the electronic properties of a recently designed TPA and PTZ-based HTM (HTM1) and its interface with the MAPI (001) surface, considering both the PbI2- and the MAI-terminations. We also addressed already known HTM molecular systems to allow for a direct comparison with the recently proposed HTM1: we characterized the molecular parameters and the MAPI/HTM interfacial properties for Spiro-OMeTAD, PTZ1, and PTZ2. Our results suggest that good adhesion properties do not ensure effective and efficient MAPI-HTM hole injection. Despite the theoretical good alignment between HTM1 HOMO and MAPI valence band edge, our results for the mutually polarized interface point out the lack of a sufficient driving force for hole transport. While the hole mobility of HTM1 outperforms those of the other HTM molecules, for this HTM molecule, our findings suggest the application of lead halide perovskite compositions other than MAPI, with substituents that lower its valence band maximum potential value.

4.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576899

RESUMO

Organic fluorophores have found broad application as emitters in luminescent solar concentrators (LSCs) for silicon photovoltaics. In particular, the preparation of organic conjugated systems with intense light-harvesting ability, emissions in the deep-red and NIR regions, and large Stokes shift values represent a very challenging undertaking. Here, we report a simple and easy way to prepare three symmetrical donor-acceptor-donor (DAD) organic-emitting materials based on a thienopyrazine core. The central core in the three dyes was modified with the introduction of aromatic substituents, aiming to affect their optical properties. The fluorophores were characterized by spectroscopic studies. In all cases, visible-NIR emissions with large Stokes shifts were found, highlighting these molecules as promising materials for the application in LSCs.

5.
Front Chem ; 8: 214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296679

RESUMO

New generation photovoltaic devices have attracted much attention in the last decades since they can be efficiently manufactured employing abundant raw materials and with less-energy intensive processes. In this context, the use of powerful environmental assessment is pivotal to support the fine-tuning of solar cells fabrication and hit the target of manufacturing effective sustainable technological devices. In this work, a mass-based green metrics and life cycle assessment combined approach is applied to analyze the environmental performances of an innovative synthetic protocol for the preparation of organic dye TTZ5, which has been successfully proposed as sensitizer for manufacturing dye sensitized solar cells. The new synthetic strategy, which is based on the C-H activation process, has been compared with the previously reported synthesis employing classic Suzuki-Miyaura cross-coupling chemistry. Results highlight the contribution of direct energy consumption and purification operations in organic syntheses at lab scale. Furthermore, they demonstrate the usefulness of the environmental multifaceted analytic tool and the power of life cycle assessment to overcome the intrinsic less comprehensive nature of green metrics for the evaluation of organic synthetic protocols.

6.
ACS Omega ; 4(4): 7614-7627, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459854

RESUMO

The design, synthesis, and characterization of a new class of blue-colored thiophene-substituted Pechmann dyes are reported. Due to a distinguishing blue coloration and the capability to absorb light in one of the most photon-dense regions of the solar spectrum, such compounds are of great interest for application as photoactive materials in organic optoelectronics, in particular, in dye-sensitized solar cells. To achieve fine tuning of the optical and electrochemical properties, the electron-poor thiophene-bis-lactone moiety has been decorated with donor (D) and acceptor groups (A), targeting fully conjugated D-A-π-A structures. The designed structures have been investigated by means of DFT and time-dependent DFT calculations, and the most promising dyes have been synthesized. These molecules represent the very first preparation of unsymmetrical Pechmann derivatives. Optical and electrochemical properties of the new dyes have been studied by cyclic voltammetry and UV-vis and fluorescence spectroscopy. In two cases, test cells were built proving that a photocurrent can indeed be generated when using electrolytes especially formulated for narrow-band-gap dyes, although with a very low efficiency.

7.
ChemSusChem ; 11(4): 793-805, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29227040

RESUMO

Donor-acceptor dyes are a well-established class of photosensitizers, used to enhance visible-light harvesting in solar cells and in direct photocatalytic reactions, such as H2 production by photoreforming of sacrificial electron donors (SEDs). Amines-typically triethanolamine (TEOA)-are commonly employed as SEDs in such reactions. Dye-sensitized photoreforming of more sustainable, biomass-derived alcohols, on the other hand, was only recently reported by using methanol as the electron donor. In this work, several rationally designed donor-acceptor dyes were used as sensitizers in H2 photocatalytic production, comparing the efficiency of TEOA and EtOH as SEDs. In particular, the effect of hydrophobic chains in the spacer and/or the donor unit of the dyes was systematically studied. The H2 production rates were higher when TEOA was used as SED, whereas the activity trends depended on the SED used. The best performance was obtained with TEOA by using a sensitizer with just one bulky hydrophobic moiety, propylenedioxythiophene, placed on the spacer unit. In the case of EtOH, the best-performing sensitizers were the ones featuring a thiazolo[5,4-d]thiazole internal unit, needed for enhancing light harvesting, and carrying alkyl chains on both the donor part and the spacer unit. The results are discussed in terms of reaction mechanism, interaction with the SED, and structural/electrochemical properties of the sensitizers.


Assuntos
Aminas/química , Corantes/química , Química Verde , Hidrogênio/química , Elétrons , Etanol , Etanolaminas , Interações Hidrofóbicas e Hidrofílicas , Fármacos Fotossensibilizantes/química
8.
Chimia (Aarau) ; 71(9): 586-591, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30188289

RESUMO

The cross-coupling reaction of organic electrophiles with organostannanes, traditionally known as the Stille reaction, has found renewed interest in the preparation of new organic materials such as conjugated polymers, organic semiconductors and photoactive molecules for use in organic photovoltaics. Moreover, a very recent field in which the Stille reaction has found successful application is that of the design and synthesis of new photosensitizers for dye-sensitized solar cells (DSSCs). DSSCs are considered a promising alternative for energy production from renewable sources. In such devices light harvesting is carried out by a dye which is generally a highly conjugated molecule. Due to the mild operating conditions and the high functional-group compatibility, the Stille reaction proved to be a powerful tool not only for the preparation of photosensitizers, but also to plan their chemical elaboration in order to tune and optimize their photophysical, electrochemical and photovoltaic properties. In this microreview some recent examples of the Stille reaction in the synthesis of organic dyes for DSSC are reported.

9.
Chem Commun (Camb) ; 50(90): 13952-5, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25264863

RESUMO

Three new thiazolo[5,4-d]thiazole-based organic dyes have been designed and synthesized for employment as DSSC sensitizers. Alternation of the electron poor thiazolothiazole unit with two propylenedioxythiophene (ProDOT) groups ensured very intense light absorption in the visible region (ε up to 9.41 × 10(4) M(-1) cm(-1) in THF solution). The dyes were particularly suitable for application in transparent and opaque thin-layer DSSCs (TiO2 thickness: 5.5-6.5 µm, efficiencies up to 7.71%), thus being good candidates for production of solar cells under simple fabrication conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...