Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014374

RESUMO

Arginases are often overexpressed in human diseases, and they are an important target for developing anti-aging and antineoplastic drugs. Arginase type 1 (ARG1) is a cytosolic enzyme, and arginase type 2 (ARG2) is a mitochondrial one. In this study, a dataset containing 2115-FDA-approved drug molecules is virtually screened for potential arginase binding using molecular docking against several ARG1 and ARG2 structures. The potential arginase ligands are classified into three categories: (1) Non-selective, (2) ARG1 selective, and (3) ARG2 selective. The evaluated potential arginase ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to lower blood pressure and treat cancer, infection, kidney disease, and Parkinson's disease thus partially validating our virtual screen. Most notable are the antihypertensive drugs candesartan, irbesartan, indapamide, and amiloride, the antiemetic rolapitant, the anti-angina ivabradine, and the antidiabetic metformin which have minimal side effects. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in therapeutic settings. The three categories greatly expand the selectivity of arginase inhibition.


Assuntos
Antineoplásicos , Arginase , Antineoplásicos/farmacologia , Aprovação de Drogas , Humanos , Ligantes , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Estados Unidos , United States Food and Drug Administration
2.
J Clin Med ; 11(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456223

RESUMO

Metastasis accounts for the majority of cancer-related deaths. Despite decades of research, the prevention and suppression of metastasis remain an elusive goal, and to date, only a few metastasis-related genes have been targeted therapeutically. Thus, there is a strong need to find potential genes involved in key driver traits of metastasis and their available drugs. In this study, we identified genes associated with metastasis and repurposable drugs that potentially target them. First, we use text mining of PubMed citations to identify candidate genes associated with metastatic processes, such as invadopodia, motility, movement, metastasis, invasion, wound healing, EMT (epithelial to mesenchymal transition), and podosome. Next, we annotated the top genes involved in each process as a driver, tumor suppressor, or oncogene. Then, a total of 185 unique cancer genes involved in metastasis-related processes were used for hub gene analysis using bioinformatics tools. Notably, a total of 77 hub genes were identified. Further, we used virtual screening data of druggable candidate hub genes involved in metastasis and identified potential drugs that can be repurposed as anti-metastatic drugs. Remarkably, we found a total of 50 approved drugs that have the potential to be repurposed against 19 hub genes involved in metastasis-related processes. These 50 drugs were also found to be validated in different cancer cell lines, such as dasatinib, captopril, leflunomide, and dextromethorphan targeting SRC, MMP2, PTK2B, and RAC1 hub genes, respectively. These repurposed drugs potentially target metastasis, provide pharmacodynamic insight, and offer a window of opportunity for the development of much-needed antimetastatic drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...