Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(42): 8070-8080, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801284

RESUMO

We investigate the coalescence of surfactant-laden water droplets by using several different surfactant types and a wide range of concentrations by means of a coarse-grained model obtained by the statistical associating fluid theory. Our results demonstrate in detail a universal mass transport mechanism of surfactant across many concentrations and several surfactant types during the process. Coalescence initiation is seen to occur via a single pinch due to aggregation of surface surfactant, and its remnants tend to become engulfed in part inside the forming bridge. Across the board we confirm the existence of an initial thermal regime with constant bridge width followed by a later inertial regime with bridge width scaling roughly as the square root of time, but see no evidence of an intermediate viscous regime. Coalescence becomes slower as surfactant concentration grows, and we see evidence of the appearance of a further slowdown of a different nature for several times the critical concentration. We anticipate that our results provide further insights in the mechanisms of coalescence of surfactant-laden droplets.

2.
Langmuir ; 39(7): 2818-2828, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36758225

RESUMO

Using extensive molecular dynamics simulation of a coarse-grained model, we demonstrate the possibility of sustained unidirectional motion (durotaxis) of droplets without external energy supply when placed on a polymer brush substrate with stiffness gradient in a certain direction. The governing key parameters for the specific substrate design studied, which determine the durotaxis efficiency, are found to be the grafting density of the brush and the droplet adhesion to the brush surface, whereas the strength of the stiffness gradient, the viscosity of the droplet, or the length of the polymer chains of the brush have only a minor effect on the process. It is shown that this durotaxial motion is driven by the steady increase of the interfacial energy between droplet and brush as the droplet moves from softer to stiffer parts of the substrate whereby the mean driving force gradually declines with decreasing roughness of the brush surface. We anticipate that our findings indicate further possibilities in the area of nanoscale motion without external energy supply.

3.
Sci Rep ; 11(1): 6441, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742005

RESUMO

We study the spin distillation of spinor gases of bosonic atoms and find two different mechanisms in [Formula: see text]Cr and [Formula: see text]Na atoms, both of which can cool effectively. The first mechanism involves dipolar scattering into initially unoccupied spin states and cools only above a threshold magnetic field. The second proceeds via equilibrium relaxation of the thermal cloud into empty spin states, reducing its proportion in the initial component. It cools only below a threshold magnetic field. The technique was initially demonstrated experimentally for a chromium dipolar gas (Naylor et al. in Phys Rev Lett 115:243002, 2015), whereas here we develop the concept further and provide an in-depth understanding of the required physics and limitations involved. Through numerical simulations, we reveal the mechanisms involved and demonstrate that the spin distillation cycle can be repeated several times, each time resulting in a significant additional reduction of the thermal atom fraction. Threshold values of magnetic field and predictions for the achievable temperature are also identified.

4.
Phys Rev Lett ; 109(20): 205302, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215499

RESUMO

We show that solitons occur generically in the thermal equilibrium state of a weakly interacting elongated Bose gas, without the need for external forcing or perturbations. This reveals a major new quality to the experimentally widespread quasicondensate state, usually thought of as primarily phase-fluctuating. Thermal solitons are seen in uniform 1D, trapped 1D, and elongated 3D gases, appearing as shallow solitons at low quasicondensate temperatures, becoming widespread and deep as temperature rises. This behavior can be understood via thermal occupation of the type II excitations in the Lieb-Liniger model of a uniform 1D gas. Furthermore, we find that the quasicondensate phase includes very appreciable density fluctuations while leaving phase fluctuations largely unaltered from the standard picture derived from a density-fluctuation-free treatment.

5.
Phys Rev Lett ; 105(1): 018903; author reply 018904, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867488
6.
Phys Rev Lett ; 94(13): 130401, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15903973

RESUMO

The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022x10(23) (Avogadro's number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...