Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Calc Var Partial Differ Equ ; 62(7): 203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525689

RESUMO

We consider the Bardeen-Cooper-Schrieffer (BCS) free energy functional with weak and macroscopic external electric and magnetic fields and derive the Ginzburg-Landau functional. We also provide an asymptotic formula for the BCS critical temperature as a function of the external fields. This extends our previous results in Deuchert et al. (Microscopic derivation of Ginzburg-Landau theory and the BCS critical temperature shift in a weak homogeneous magnetic field, PMP 4(1), 1-89 (2023)) for the constant magnetic field to general magnetic fields with a nonzero magnetic flux through the unit cell.

2.
J Chem Phys ; 152(16): 164302, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32357791

RESUMO

Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born-Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA