Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34442562

RESUMO

The work presents an efficient and non-invasive method to visualize the local concentration and viscosity distribution of two miscible and non-reacting substances with a significant viscosity difference in a microchannel with a Y-shape cell. The proof-of-concept setup consists of a near-infrared (NIR) camera and cost-effective dome lighting with NIR light-emitting diodes (LED) covering the wavelength range of 1050 to 1650 nm. Absorption differences of glycerol and water and their mixtures with a mass fraction of glycerol from 0 to 0.95 gGlycgtotal-1 were analyzed in the NIR spectral area. The resulting measurement images were converted in a concentration profile by using absorbance calculated with Lambert-Beer law. A linear behavior between the concentration and the absorption coefficient is demonstrated. The result of local concentration in mass fraction was used to determine the local viscosity and illustrated as distribution images. By variating the fluid parameters, the influences of the highly different original viscosities in the mixing procedure were investigated and visualized.

2.
Micromachines (Basel) ; 12(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499366

RESUMO

This work presents a novel method for the non-invasive, in-line monitoring of mixing processes in microchannels using the Raman photometric technique. The measuring set-up distinguishes itself from other works in this field by utilizing recent state-of-the-art customized photon multiplier (CPM) detectors, bypassing the use of a spectrometer. This addresses the limiting factor of integration times by achieving measuring rates of 10 ms. The method was validated using the ternary system of toluene-water-acetone. The optical measuring system consists of two functional units: the coaxial Raman probe optimized for excitation at a laser wavelength of 532 nm and the photometric detector centered around the CPMs. The spot size of the focused laser is a defining factor of the spatial resolution of the set-up. The depth of focus is measured at approx. 85 µm with a spot size of approx. 45 µm, while still maintaining a relatively high numerical aperture of 0.42, the latter of which is also critical for coaxial detection of inelastically scattered photons. The working distance in this set-up is 20 mm. The microchannel is a T-junction mixer with a square cross section of 500 by 500 µm, a hydraulic diameter of 500 µm and 70 mm channel length. The extraction of acetone from toluene into water is tracked at an initial concentration of 25% as a function of flow rate and accordingly residence time. The investigated flow rates ranged from 0.1 mL/min to 0.006 mL/min. The residence times from the T-junction to the measuring point varies from 1.5 to 25 s. At 0.006 mL/min a constant acetone concentration of approx. 12.6% was measured, indicating that the mixing process reached the equilibrium of the system at approx. 12.5%. For prototype benchmarking, comparative measurements were carried out with a commercially available Raman spectrometer (RXN1, Kaiser Optical Systems, Ann Arbor, MI, USA). Count rates of the spectrophotometer surpassed those of the spectrometer by at least one order of magnitude at identical target concentrations and optical power output. The experimental data demonstrate the suitability and potential of the new measuring system to detect locally and time-resolved concentration profiles in moving fluids while avoiding external influence.

3.
Micromachines (Basel) ; 11(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231076

RESUMO

This paper provides an overview of how molecule-sensitive, spatially-resolved technologies can be applied for monitoring and measuring in microchannels. The principles of elastic light scattering, fluorescence, near-infrared, mid-infrared, and Raman imaging, as well as combination techniques, are briefly presented, and their advantages and disadvantages are explained. With optical methods, images can be acquired both scanning and simultaneously as a complete image. Scanning technologies require more acquisition time, and fast moving processes are not easily observable. On the other hand, molecular selectivity is very high, especially in Raman and mid-infrared (MIR) scanning. For near-infrared (NIR) images, the entire measuring range can be simultaneously recorded with indium gallium arsenide (InGaAs) cameras. However, in this wavelength range, water is the dominant molecule, so it is sometimes necessary to use complex learning algorithms that increase the preparation effort before the actual measurement. These technologies excite molecular vibrations in a variety of ways, making these methods suitable for specific products. Besides measurements of the fluid composition, technologies for particle detection are of additional importance. With scattered light techniques and evaluation according to the Mie theory, particles in the range of 0.2-1 mm can be detected, and fast growth processes can be observed. Local multispectral measurements can also be carried out with fiber optic-coupled systems through small probe heads of approximately 1 mm diameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...