Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3797, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365175

RESUMO

Achieving high solar-to-hydrogen (STH) efficiency concomitant with long-term durability using low-cost, scalable photo-absorbers is a long-standing challenge. Here we report the design and fabrication of a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record STH efficiencies. The first, a co-planar photocathode-photoanode architecture, achieved an STH efficiency of 13.4% and 16.3 h to t60, solely limited by the hygroscopic hole transport layer in the n-i-p device. The second was formed using a monolithic stacked silicon-perovskite tandem, with a peak STH efficiency of 20.8% and 102 h of continuous operation before t60 under AM 1.5G illumination. These advances will lead to efficient, durable, and low-cost solar-driven water-splitting technology with multifunctional barriers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35666827

RESUMO

The long-term stability for the hydrogen-evolution reaction (HER) of homojunction pn+-Ga0.52In0.48P photocathodes (band gap = 1.8 eV) with an electrodeposited Pt catalyst (pn+-GaInP/Pt) has been systematically evaluated in both acidic and alkaline electrolytes. Electrode dissolution during chronoamperometry was correlated with changes over time in the current density-potential (J-E) behavior to reveal the underlying failure mechanism. Pristine pn+-GaInP/Pt photocathodes yielded an open-circuit photopotential (Eoc) as positive as >1.0 V vs the potential of the reversible hydrogen electrode (RHE) and a light-limited current density (Jph) of >12 mA cm-2 (1-sun illumination). However, Eoc and Jph gradually degraded at either pH 0 or pH 14. The performance degradation was attributed to three different failure modes: (1) gradual thinning of the n+-emitter layer due to GaInP dissolution in acid; (2) active corrosion of the underlying GaAs substrate at positive potentials causing delamination of the upper GaInP epilayers; and (3) direct GaAs/electrolyte contact compromising the operational stability of the device. This work reveals the importance of both substrate stability and structural integrity of integrated photoelectrodes toward stable solar fuel generation.

3.
ACS Appl Mater Interfaces ; 14(18): 20385-20392, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35005903

RESUMO

GaInP2 has shown promise as the wide bandgap top junction in tandem absorber photoelectrochemical (PEC) water splitting devices. Among previously reported dual-junction PEC devices with a GaInP2 top cell, those with the highest performance incorporate an AlInP2 window layer (WL) to reduce surface recombination and a thin GaInP2 capping layer (CL) to protect the WL from corrosion in electrolytes. However, the stability of these III-V systems is limited, and durability continues to be a major challenge broadly in the field of PEC water splitting. This work provides a systematic investigation into the durability of GaInP2 systems, examining the impacts of the window layer and capping layer among single junction pn-GaInP2 photocathodes coated with an MoS2 catalytic and protective layer. The photocathode with both a CL and WL demonstrates the highest PEC performance and longest lifetime, producing a significant current for >125 h. In situ optical imaging and post-test characterization illustrate the progression of macroscopic degradation and chemical state. The surface architecture combining an MoS2 catalyst, CL, and WL can be translated to dual-junction PEC devices with GaInP2 or other III-V top junctions to enable more efficient and stable PEC systems.

4.
ACS Appl Mater Interfaces ; 13(48): 57350-57361, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34821500

RESUMO

The long-term stability in acidic or alkaline aqueous electrolytes of p-Ga0.52In0.48P photocathodes, with a band gap of ∼1.8 eV, for the solar-driven hydrogen-evolution reaction (HER) has been evaluated from a thermodynamic, kinetic, and mechanistic perspective. At either pH 0 or pH 14, etched p-GaInP electrodes corroded cathodically under illumination and formed metallic In0 on the photoelectrode surface. In contrast, under the same conditions, electrodeposition of Pt facilitated the HER kinetics and stabilized p-GaInP/Pt photoelectrodes against such cathodic decomposition. When held at 0 V versus the reversible hydrogen electrode, p-GaInP/Pt electrodes in either pH = 0 or pH = 14 exhibited stable current densities (J) of ∼-9 mA cm-2 for hundreds of hours under simulated 1 sun illumination. During the stability tests, the current density-potential (J-E) characteristics of the p-GaInP/Pt photoelectrodes degraded due to pH-dependent changes in the surface chemistry of the photocathode. This work provides a fundamental understanding of the stability and corrosion mechanisms of p-GaInP photocathodes that constitute a promising top light absorber for tandem solar-fuel generators.

5.
ACS Appl Polym Mater ; 2(11): 4559-4569, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38434177

RESUMO

Bipolar membranes (BPMs) are the enabling component of many promising electrochemical devices used for separation and energy conversion. Here, we describe the development of high-performance BPMs, including two-dimensional BPMs (2D BPMs) prepared by hot-pressing two preformed membranes and three-dimensional BPMs (3D BPMs) prepared by electrospinning ionomer solutions and polyethylene oxide. Graphene oxide (GOx) was introduced into the BPM junction as a water-dissociation catalyst. We assessed electrochemical performance of the prepared BPMs by voltage-current (V-I) curves and galvanostatic electrochemical impedance spectroscopy. We found the optimal GOx loading in 2D BPMs to be 100 µg cm-2, which led to complete coverage of GOx at the interface. The integration of GOx beyond this loading moderately improved electrochemical performance but significantly compromised mechanical strength. GOx-catalyzed 2D BPMs showed comparable performance with a commercially available Fumasep BPM at current densities up to 500 mA cm-2. The 3D BPMs exhibited even better performance: lower resistance and higher efficiency for water dissociation and substantially higher stability under repeated cycling up to high current densities. The improved electrochemical performance and mechanical stability of the 3D BPMs make them suitable for incorporation into CO2 electrolysis devices where high current densities are necessary.

6.
ACS Omega ; 4(4): 7436-7447, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459840

RESUMO

We used high-throughput experimental screening methods to unveil the physical and chemical properties of Mn1-x Zn x O wurtzite alloys and identify their appropriate composition for effective water splitting application. The Mn1-x Zn x O thin films were synthesized using combinatorial pulsed laser deposition, permitting for characterization of a wide range of compositions with x varying from 0 to 1. The solubility limit of ZnO in MnO was determined using the disappearing phase method from X-ray diffraction and X-ray fluorescence data and found to increase with decreasing substrate temperature due to kinetic limitations of the thin-film growth at relatively low temperature. Optical measurements indicate the strong reduction of the optical band gap down to 2.1 eV at x = 0.5 associated with the rock salt-to-wurtzite structural transition in Mn1-x Zn x O alloys. Transmission electron microscopy results show evidence of a homogeneous wurtzite alloy system for a broad range of Mn1-x Zn x O compositions above x = 0.4. The wurtzite Mn1-x ZnxO samples with the 0.4 < x < 0.6 range were studied as anodes for photoelectrochemical water splitting, with a maximum current density of 340 µA cm-2 for 673 nm-thick films. These Mn1-x Zn x O films were stable in pH = 10, showing no evidence of photocorrosion or degradation after 24 h under water oxidation conditions. Doping Mn1-x Zn x O materials with Ga dramatically increases the electrical conductivity of Mn1-x Zn x O up to ∼1.9 S/cm for x = 0.48, but these doped samples are not active in water splitting. Mott-Schottky and UPS/XPS measurements show that the presence of dopant atoms reduces the space charge region and increases the number of mid-gap surface states. Overall, this study demonstrates that Mn1-x Zn x O alloys hold promise for photoelectrochemical water splitting, which could be enhanced with further tailoring of their electronic properties.

7.
Nat Commun ; 10(1): 3388, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358745

RESUMO

Catalytic interface of semiconductor photoelectrodes is critical for high-performance photoelectrochemical solar water splitting because of its multiple roles in light absorption, electrocatalysis, and corrosion protection. Nevertheless, simultaneously optimizing each of these processes represents a materials conundrum owing to conflicting requirements of materials attributes at the electrode surface. Here we show an approach that can circumvent these challenges by collaboratively exploiting corrosion-resistant surface stoichiometry and structurally-tailored reactive interface. Nanoporous, density-graded surface of 'black' gallium indium phosphide (GaInP2), when combined with ammonium-sulfide-based surface passivation, effectively reduces reflection and surface recombination of photogenerated carriers for high efficiency photocatalysis in the hydrogen evolution half-reaction, but also augments electrochemical durability with lifetime over 124 h via strongly suppressed kinetics of corrosion. Such synergistic control of stoichiometry and structure at the reactive interface provides a practical pathway to concurrently enhance efficiency and durability of semiconductor photoelectrodes without solely relying on the development of new protective materials.

8.
ACS Appl Mater Interfaces ; 11(28): 25115-25122, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264402

RESUMO

Catalytic MoSx thin films have been directly photoelectrodeposited on GaInP2 photocathodes for stable photoelectrochemical hydrogen generation. Specifically, the MoSx deposition conditions were controlled to obtain 8-10 nm films directly on p-GaInP2 substrates without ancillary protective layers. The films were nominally composed of MoS2, with additional MoOxSy and MoO3 species detected and showed no long-range crystalline order. The as-deposited material showed excellent catalytic activity toward the hydrogen evolution reaction relative to bare p-GaInP2. Notably, no appreciable photocurrent reduction was incurred by the addition of the photoelectrodeposited MoSx catalyst to the GaInP2 photocathode under light-limited operating conditions, highlighting the advantageous optical properties of the film. The MoSx catalyst also imparted enhanced durability toward photoelectrochemical hydrogen evolution in acidic conditions, maintaining nearly 85% of the initial photocurrent after 50 h of electrolysis. In total, this work demonstrates a simple method for producing dual-function catalyst/protective layers directly on high-performance, planar III-V photoelectrodes for photoelectrochemical energy conversion.

9.
ChemSusChem ; 10(4): 767-773, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-27943610

RESUMO

Efficient water splitting using light as the only energy input requires stable semiconductor electrodes with favorable energetics for the water-oxidation and proton-reduction reactions. Strategies to tune electrode potentials using molecular dipoles adsorbed to the semiconductor surface have been pursued for decades but are often based on weak interactions and quickly react to desorb the molecule under conditions relevant to sustained photoelectrolysis. Here, we show that covalent attachment of fluorinated, aromatic molecules to p-GaAs(1 0 0) surfaces can be employed to tune the photocurrent onset potentials of p-GaAs(1 0 0) photocathodes and reduce the external energy required for water splitting. Results indicate that initial photocurrent onset potentials can be shifted by nearly 150 mV in pH -0.5 electrolyte under 1 Sun (1000 W m-2 ) illumination resulting from the covalently bound surface dipole. Though X-ray photoelectron spectroscopy analysis reveals that the covalent molecular dipole attachment is not robust under extended 50 h photoelectrolysis, the modified surface delays arsenic oxide formation that results in a p-GaAs(1 0 0) photoelectrode operating at a sustained photocurrent density of -20.5 mA cm-2 within -0.5 V of the reversible hydrogen electrode.


Assuntos
Arsenicais/química , Técnicas Eletroquímicas/métodos , Eletrólise/métodos , Gálio/química , Água/química , Ácidos , Coartação Aórtica , Eletrodos , Eletrólitos , Anormalidades do Olho , Síndromes Neurocutâneas , Propriedades de Superfície
10.
J Phys Chem Lett ; 7(11): 2044-9, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27196435

RESUMO

Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

11.
ACS Appl Mater Interfaces ; 7(21): 11346-50, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25970795

RESUMO

The p-type semiconductor GaInP2 has a nearly ideal bandgap (∼1.83 eV) for hydrogen fuel generation by photoelectrochemical water splitting but is unable to drive this reaction because of misalignment of the semiconductor band edges with the water redox half reactions. Here, we show that attachment of an appropriate conjugated phosphonic acid to the GaInP2 electrode surface improves the band edge alignment, closer to the desired overlap with the water redox potentials. We demonstrate that this surface modification approach is able to adjust the energetic position of the band edges by as much as 0.8 eV, showing that it may be possible to engineer the energetics at the semiconductor/electrolyte interface to allow for unbiased water splitting with a single photoelectrode having a bandgap of less than 2 eV.

12.
Phys Chem Chem Phys ; 15(35): 14723-8, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23900229

RESUMO

We report the design, synthesis and photoelectrochemical characterization of cobalt phosphate (Co-Pi) oxygen evolution catalyst modified heterojunction photoelectrodes consisting of one-dimensional WO3 nanorods (1D-WO3) and highly porous BiVO4 layers. The 1D-WO3 nanorods were prepared by the decomposition of the tetrabutylammonium decatungstate precursor in the presence of poly(ethylene glycol) as a binding agent. The porous BiVO4 layers were spray deposited using a surfactant assisted metal-organic decomposition method. The Co-Pi oxygen evolution catalyst was deposited onto the BiVO4/1D-WO3/FTO heterojunction electrode using a photoassisted electrodeposition method. The Co-Pi catalyst modified heterojunction electrodes exhibited a sustained enhancement in the photocurrent compared to the unmodified BiVO4/1D-WO3/FTO heterojunction electrodes. The improved photoelectrochemical properties profited from the enhanced charge carrier separation achieved through the integration of highly porous BiVO4 layers on top of 1D-WO3 nanorods and from the superior kinetics due to the presence of the Co-Pi oxygen evolution catalyst on top of BiVO4/1D-WO3/FTO heterojunction electrodes.

13.
Phys Chem Chem Phys ; 15(9): 3273-8, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23348367

RESUMO

BiVO(4)/CuWO(4) heterojunction electrodes were prepared using spray deposition of a highly porous bismuth vanadate film onto the surface of an electrodeposited three dimensional network connected copper tungstate. Bilayer BiVO(4)/CuWO(4)/fluorine doped tin oxide glass (FTO) electrodes demonstrated higher photocurrent magnitudes than either with BiVO(4)/FTO or CuWO(4)/FTO electrodes in 1.0 M Na(2)SO(4) electrolyte buffered at pH 7. The photocurrent is enhanced by the formation of the heterojunction that aids charge carrier collection brought about by the band edge offsets. When the pH 7 buffered electrolytes contained 1.0 M bicarbonate is employed instead of 1.0 M sulfate, the charge transfer resistance was decreased. This led to nearly 1.8 times the photocurrent density at 1.0 V vs. Ag/AgCl. The photocurrent was stable over 24 hours in bicarbonate electrolyte.

14.
Phys Chem Chem Phys ; 14(19): 7032-9, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22466621

RESUMO

A facile and simple procedure for the synthesis of semi-transparent and porous SiO2-BiVO4 electrodes is reported. The method involves a surfactant assisted metal-organic decomposition at 500 °C. An earth abundant oxygen evolution catalyst (OEC), cobalt phosphate (Co-Pi), has been used to modify the SiO2-BiVO4 electrode by electrodeposition (ED) and photoassisted electrodeposition (PED) methods. Modified electrodes by these two methods have been examined for light induced water oxidation and compared to the unmodified SiO2-BiVO4 electrodes by various photoelectrochemical techniques. The PED method was a more effective method of OEC preparation than the ED method as evidenced by an increased photocurrent magnitude during photocurrent-potential (I-V) characterizations. Electrode surfaces catalyzed by PED exhibited a very large cathodic shift (∼420 mV) in the onset potential for water oxidation. The chopped-light I-V measurements performed at different intervals over 24-hour extended testing under illumination and applied bias conditions show a fair photostability for PED Co-Pi modified SiO2-BiVO4.

15.
J Phys Chem B ; 110(50): 25297-307, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17165975

RESUMO

Epilayers of single-crystal GaAsPN and GaPN semiconductor samples with varying nitrogen compositions were photoelectrochemically characterized to determine their potential to serve as water splitting photoelectrodes. The band gap and flatband potentials were determined and used to calculate the valence and conduction band edge energies. The band edges for all compositions appear to be too negative by more than 500 mV for any of the materials to effect light-driven water splitting without an external bias. Corrosion analysis was used to establish material stability under operating conditions. GaPN was found to show good stability toward photocorrosion; on the other hand, GaAsPN showed enhanced photocorrosion as compared to GaP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...