Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 13(6): 064122, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832120

RESUMO

In breast cancer development, crosstalk between mammary epithelial cells and neighboring vascular endothelial cells is critical to understanding tumor progression and metastasis, but the mechanisms of this dynamic interplay are not fully understood. Current cell culture platforms do not accurately recapitulate the 3D luminal architecture of mammary gland elements. Here, we present the development of an accessible and scalable microfluidic coculture system that incorporates two parallel 3D luminal structures that mimic vascular endothelial and mammary epithelial cell layers, respectively. This parallel 3D lumen configuration allows investigation of endothelial-epithelial crosstalk and its effects of the comigration of endothelial and epithelial cells into microscale migration ports located between the parallel lumens. We describe the development and application of our platform, demonstrate generation of 3D luminal cell layers for endothelial cells and three different breast cancer cell lines, and quantify their migration profiles based on number of migrated cells, area coverage by migrated cells, and distance traveled by individual migrating cells into the migration ports. Our system enables analysis at the single-cell level, allows simultaneous monitoring of endothelial and epithelial cell migration within a 3D extracellular matrix, and has potential for applications in basic research on cellular crosstalk as well as drug development.

2.
Integr Biol (Camb) ; 11(4): 119-129, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125041

RESUMO

Bone metastasis is a common, yet serious, complication of breast cancer. Breast cancer cells that extravasate from blood vessels to the bone devastate bone quality by interacting with bone cells and disrupting the bone remodeling balance. Although exercise is often suggested as a cancer intervention strategy and mechanical loading during exercise is known to regulate bone remodeling, its role in preventing bone metastasis remains unknown. We developed a novel in vitro microfluidic tissue model to investigate the role of osteocytes in the mechanical regulation of breast cancer bone metastasis. Metastatic MDA-MB-231 breast cancer cells were cultured inside a 3D microfluidic lumen lined with human umbilical vein endothelial cells (HUVECs), which is adjacent to a channel seeded with osteocyte-like MLO-Y4 cells. Physiologically relevant oscillatory fluid flow (OFF) (1 Pa, 1 Hz) was applied to mechanically stimulate the osteocytes. Hydrogel-filled side channels in-between the two channels allowed real-time, bi-directional cellular signaling and cancer cell extravasation over 3 days. The applied OFF was capable of inducing intracellular calcium responses in osteocytes (82.3% cells responding with a 3.71 fold increase average magnitude). Both extravasation distance and percentage of extravasated side-channels were significantly reduced with mechanically stimulated osteocytes (32.4% and 53.5% of control, respectively) compared to static osteocytes (102.1% and 107.3% of control, respectively). This is the first microfluidic device that has successfully integrated stimulatory bone fluid flow, and demonstrated that mechanically stimulated osteocytes reduced breast cancer extravasation. Future work with this platform will determine the specific mechanisms involved in osteocyte mechanoregulation of breast cancer bone metastasis, as well as other types of cancer metastasis and diseases.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Dispositivos Lab-On-A-Chip , Microfluídica , Osteócitos/citologia , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Colágeno/química , Desenho de Equipamento , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis , Camundongos , Metástase Neoplásica , Células RAW 264.7 , Ratos , Transdução de Sinais , Estresse Mecânico
3.
Biomech Model Mechanobiol ; 18(3): 717-731, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30604299

RESUMO

Tumour-induced angiogenesis is a complex biological process that involves growth of new blood vessels within the tumour microenvironment and is an important target for cancer therapies. Significant efforts have been undertaken to develop theoretical models as well as in vitro experimental models to study angiogenesis in a highly controllable and accessible manner. Various mathematical models have been developed to study angiogenesis, but these have mostly been applied to in vivo assays. Recently, microfluidic cell culture systems have emerged as useful and powerful tools for studying cell migration and angiogenesis processes, but thus far, mathematical angiogenesis models have not yet been applied to microfluidic geometries. Integrating mathematical and computational modelling with microfluidic-based assays has potential to enable greater control over experimental parameters, provide new insights into fundamental angiogenesis processes and assist in accelerating design and optimization of operating conditions. Here, we describe the development and application of a combined mathematical and computational modelling approach tailored specifically for microfluidic cell culture systems. The objective was to allow optimization of the engineering design of microfluidic systems, where the model may be used to test the impact of various geometric parameters on cell migration and angiogenesis processes, and assist in identifying optimal device dimensions to achieve desired readouts. We employed two separate continuum mathematical models that treated cell density, vessel length density and vascular endothelial growth factor (VEGF) concentration as continuous average variables, and we implemented these models numerically using finite difference discretization and a Method of Lines approach. We examined the average response of cells to VEGF gradients inside our microfluidic device, including the time-dependent changes in cell density and vessel density, and how they were affected by changes in device geometries including the migration port width and length. Our study demonstrated that mathematical modelling can be integrated with microfluidics to offer new perspectives on emerging problems in biomicrofluidics and cancer biology.


Assuntos
Técnicas de Cultura de Células/métodos , Movimento Celular , Células Endoteliais/citologia , Microfluídica/métodos , Modelos Biológicos , Neovascularização Fisiológica , Vasos Sanguíneos/fisiologia , Humanos
4.
J Virol ; 88(22): 13378-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210183

RESUMO

UNLABELLED: Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. IMPORTANCE: After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Quinases/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Internalização do Vírus , Animais , Caveolinas/metabolismo , Linhagem Celular , Clatrina/metabolismo , Endocitose , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...