Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25128, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317908

RESUMO

The three-year Black Carbon (BC) aerosol measurements made during 2020, 2021, and 2022 over a rural location, namely, Panchgaon, surrounded by Aravali hillocks (elevation of about 400-600 m) have been analyzed with an aim to determine their optical and radiative characteristics, seasonal and long-term variations in mass concentration. The affinity between these parameters and associated pollutants and planetary boundary layer height (PBLH), affected by the orography, to delineate their role in mass concentration changes with time have been investigated. The coincident OPAC (Optical Properties of Aerosols and Clouds) Model-derived aerosol optical depth (AOD), and single scattering albedo (SSA) have been compared with the observed BC mass concentration, and also with synchronous satellite measurements. The year-to-year variability analysis of the data reveals that the rate of increase of BC concentration is high. The variability was low due to the reasons explained. It implies that the year-to-year variability in BC concentration at the study site depends on the source strength modulated by the valley-driven meteorology. Added, the percentage departures of BC concentration show positive values (higher concentration) during morning and evening hours, which could be due to more anthropogenic activities while it shows negative values during afternoon hours and lower boundary layer heights. The force exerted by the radiation due to BC aerosols at the bottom of the atmosphere (BOA), and in the atmosphere (ATM) are almost equal in magnitude and negative, while that at the top-of-the-atmosphere (TOA) is smaller and positive, indicating that BC aerosols in the study region cools the atmosphere at the BOA and warms the ATM and TOA, which indirectly reveals the dominant role of long-range transport phenomenon at higher levels as compared to the surface level.

2.
Environ Monit Assess ; 195(10): 1170, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682385

RESUMO

Every year at the onset of winter season (October-November), crop residue/parali/stubble burning starts in Punjab and Haryana, leading to heavy air pollution in Delhi, and adversely affecting human and environmental health. During this time, the combination of unfavourable meteorological conditions, additional emissions from stubble burning, and firework activities in this area causes the air quality to further deteriorate. In this study, we have attempted to understand the influence of parali and firecracker incidents on air pollutants' variability over Delhi during the last three years (2020 to 2022). For this purpose, daily average particulate matter and gaseous pollutants data were fetched from the Central Pollution Control Board (CPCB), and daily total fire counts and fire radiative power (FRP) data were retrieved from NASA's Fire Information for Resource Management System (FIRMS). A bigger area of severe burning is suggested by higher FRP values and higher fire counts in the middle of November in all the years considered. Three years satellite-based FIRMS data over Punjab and Haryana show the highest number of active fire counts in 2021 (n = 80,505) followed by 2020 (n = 75,428), and 2022 (n = 49,194). More than 90% parali burning incidents were observed in Punjab state only despite the considerable variability in numbers among the years. The significant effect of parali burning was seen on pollutant concentration variability. As the number of fire count increases or decreases in Punjab and Haryana, there is a corresponding increase or decrease in the particulate matter concentration with a time lag of few days (1 to 2 days). The trend in backward air mass trajectories suggests that the variable response time of pollutants' concentration is due to local and distant sources with different air mass speeds. Our estimates suggest that stubble burning contributes 50-75% increment in PM2.5 and 40 to 45% increase in PM10 concentration between October and November. A good positive correlation between PM2.5, PM10, NOX, and CO and fire counts (up to 0.8) suggests a strong influence of stubble burning on air quality over Delhi. Furthermore, the firecracker activities significantly increase the concentration of particulate matter with ~100% increment in PM2.5 and ~55% increment in PM10 mass concentrations for a relatively shorter period (1 to 2 days).


Assuntos
Poluição do Ar , Poluentes Ambientais , Humanos , Monitoramento Ambiental , Material Particulado , Índia
3.
Sci Total Environ ; 431: 323-31, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22705867

RESUMO

Vertical profiles of black carbon (BC) aerosol were determined from aircraft measurements under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program conducted by the Indian Institute of Tropical Meteorology, India during 2009 over Bangalore and Hyderabad in south India. BC mass loadings decreased approximately monotonically from 10(3) to 10(4) ng/m(3) at the surface to ~10(2) ng/m(3) at an altitude of about 7 km; although layers at intermediate levels containing anomalously high BC loadings were frequently encountered that were attributed mainly to the convective transport from surface sources accompanied by changes in the local boundary layer and atmospheric stability. In addition, as evidenced from air mass back trajectories; long range transport from distant sources contributed to some anomalous spikes in BC concentration. The presence of BC in cloud forming regions of the free troposphere could have important implications for cloud microphysics and subsequent rainfall mechanism over this region. Apart from this, the effects on human health are equally important.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Altitude , Carbono/análise , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA