Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(36): 32258-32270, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720788

RESUMO

M. tuberculosis, an etiological agent of tuberculosis, requires a long treatment regimen due to its ability to respond to stress and persist inside the host. The second messenger (p)ppGpp-mediated stress response plays a critical role in such long-term survival, persistence, and antibiotic tolerance which may also lead to the emergence of multiple drug resistance. In mycobacteria, (pp)pGpp molecules are synthesized predominantly by two bifunctional enzymes-long RSH-Rel and short SAS-RelZ. The long RSH-Rel is a major (p)ppGpp synthetase and hydrolase. How it switches its activity from synthesis to hydrolysis remains unclear. RelMtb mutant has been reported to be defective in biofilm formation, cell wall function, and persister cell formation. The survival of such mutants has also been observed to be compromised in infection models. In M. smegmatis, short SAS-RelZ has RNase HII activity in addition to (pp)Gpp synthesis activity. The RNase HII function of RelZ has been implicated in resolving replication-transcription conflicts by degrading R-loops. However, the mechanism and regulatory aspects of such a regulation remain elusive. In this article, we have discussed (p)ppGpp metabolism and its role in managing the stress response network of mycobacteria, which is responsible for long-term survival inside the host, making it an important therapeutic target.

2.
J Biomol Struct Dyn ; 41(22): 12654-12667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636838

RESUMO

Streptococcus pneumonia, the causative agent of sepsis, meningitis and pneumonia, is held responsible for causing invasive diseases predominantly in children along with adults from both developing and developed countries. The available vaccines coverage in the context of different serotypes is limited and emergence of non-vaccine serotypes could further emerge as a threat in future. Advanced immunoinformatics tools have been used for developing a multi epitope subunit vaccine. In the current study we have subjected these four surface antigenic proteins Ply, PsaA, PspA and PspK to construct vaccine designs. We have predicted different B-cell and T-cell epitopes by using NetCTL 1.2, IEDB (Immune Epitope Databases) and ABCpred. An adjuvant (griselimycin) has been added to the vaccine construct sequence in order to improve its immunogenicity. The vaccine construct has been evaluated for its antigenicity, allergenicity, toxicity and different physio-chemical properties. The bioinformatic tools have been used for prediction, refinement and validation of the 3 D structure. Further, the vaccine structure has been docked with a toll-like receptor (TLR-4) by ClusPro 2.0. In conclusion, the proposed multi-epitope vaccine designs could potentially activate both humoral and cellular immune responses and has a potential to be a vaccine candidate against S.pneumoniae, and requires experimental validation for ensuring immunogenicity and safety profile.Communicated by Ramaswamy H. Sarma.


Assuntos
Epitopos de Linfócito T , Streptococcus pneumoniae , Criança , Humanos , Sequência de Aminoácidos , Vacinas de Subunidades Antigênicas , Epitopos de Linfócito B , Biologia Computacional , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...