Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(38): 5641-5650, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36028455

RESUMO

We assessed the genetic and phenotypic characteristics of a yellow fever vaccine candidate, which was cloned from a YF-VAX substrain selected for growth in Vero cells (vYF-247), during the manufacturing process from the master seed lot (MSL) and working seed lot (WSL) through to the drug substance (DS) stage. There were nine minor nucleotide variants observed from the MSL to the DS stage, of which five led to amino acid changes. The variant positions were, however, not known risks for any virulence modification. vYF-247 exhibits a homogenous plaque size profile (as expected for a cloned vaccine candidate) composed of small plaques (<1 mm) that remained consistent throughout the manufacturing process. In addition, there was no change in the viral replication rate. Of note, the DS sequences across the two manufacturing campaigns (2018 and 2019) were very similar suggesting a high batch-to-batch consistency. All MSL, WSL and DS batches exhibited similar neurovirulence profiles in mice and had a more attenuated neurovirulence phenotype than the YF-VAX (egg-based vaccine) comparator. Overall, the neurovirulence phenotype of vYF-247 does not change from MSL, WSL to DS. These data collectively support the safety and genetic stability of vYF-247 during the production process.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Animais , Antígenos Virais , Chlorocebus aethiops , Camundongos , Fenótipo , Vacinas Atenuadas/genética , Células Vero , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/genética , Vírus da Febre Amarela/genética
2.
Biologicals ; 67: 62-68, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32843276

RESUMO

During vaccine production, RNA from chimeric yellow fever-dengue (CYD) vaccine viruses (CYD1, CYD2, CYD3 and CYD4) is currently quantified using separate serotype-specific RT-qPCR assays. Here we describe the results from a proof-of-concept study on the development of a multiplex reverse transcriptase droplet digital PCR (RT-ddPCR) assay for simultaneous quantification of RNA for all four viruses. Serotype-specific simplex RT-ddPCRs were developed using the serotype-specific PCR systems (forward and reverse primers and FAM (fluorescent chromophores 6-carboxyfluorescein) and YY (Yakima Yellow)-labelled probes), used in the routine RT-qPCR. The PCR systems were specific and gave similar quantification results to those from the RT-qPCR assay. Linear regression analyses were used to select relative probe concentrations to obtain distinct clusters for each target RNA in a 2-D cluster plot in a multiplex RT-ddPCR assay. We showed the clusters were positioned as predicted in the model for each CYD RNA and were well separated. The multiplex RT-ddPCR gave similar quantification results to those obtained by the serotype-specific RT-qPCR assays for triplicate samples containing 7, 8 or 9 Log10 Geq/mL. In conclusion, these results demonstrate that it is possible to quantify RNA from four CYD serotypes with a multiplex RT-ddPCR assay in a single assay.


Assuntos
Vírus da Dengue/genética , Dengue/diagnóstico , Estudo de Prova de Conceito , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/fisiologia , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sorogrupo
3.
Diabetologia ; 58(2): 346-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25370797

RESUMO

AIMS/HYPOTHESIS: Enterovirus infections have been implicated in the aetiology of autoimmune type 1 diabetes. A vaccine could be used to test the causal relationship between enterovirus infections and diabetes development. However, the development of a vaccine against a virus suspected to induce an autoimmune disease is challenging, since the vaccine itself might trigger autoimmunity. Another challenge is to select the enterovirus serotypes to target with a vaccine. Here we aimed to evaluate the function and autoimmune safety of a novel non-adjuvanted prototype vaccine to Coxsackievirus serotype B1 (CVB1), a member of the enterovirus genus. METHODS: A formalin-inactivated CVB1 vaccine was developed and tested for its immunogenicity and safety in BALB/c and NOD mice. Prediabetic NOD mice were vaccinated, infected with CVB1 or mock-treated to compare the effect on diabetes development. RESULTS: Vaccinated mice produced high titres of CVB1-neutralising antibodies without signs of vaccine-related side effects. Vaccinated mice challenged with CVB1 had significantly reduced levels of replicating virus in their blood and the pancreas. Prediabetic NOD mice demonstrated an accelerated onset of diabetes upon CVB1 infection whereas no accelerated disease manifestation or increased production of insulin autoantibodies was observed in vaccinated mice. CONCLUSIONS/INTERPRETATION: We conclude that the prototype vaccine is safe and confers protection from infection without accelerating diabetes development in mice. These results encourage the development of a multivalent enterovirus vaccine for human use, which could be used to determine whether enterovirus infections trigger beta cell autoimmunity and type 1 diabetes in humans.


Assuntos
Anticorpos Antivirais/metabolismo , Infecções por Coxsackievirus/patologia , Diabetes Mellitus Experimental/metabolismo , Infecções por Enterovirus/patologia , Vacinas Virais/farmacologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD
4.
J Virol Methods ; 178(1-2): 129-36, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21907241

RESUMO

Two IgM monoclonal antibodies (MAbs), Y6F5 and Y13F9, were selected during a screening of clones obtained immunising BALB/c mice with purified envelop proteins of the A/Sydney/5/97 (H3N2) IVR108 influenza strain. These MAbs recognised avian glycans on the haemagglutinin (HA) of the virus. This broad recognition allowed these MAbs to be used as enzyme-labelled secondary antibody reagents in a strain specific enzyme-linked immunosorbent assay (ELISA) in combination with a capture MAb that recognised and allowed the quantitation of the strain specific HA protein present in an egg-produced influenza vaccine. Advantage was taken of these MAbs to develop a universal ELISA in which the MAbs were used both as capture antibody and as enzyme-labelled secondary antibody to detect and quantify the HA protein of any egg-derived influenza vaccine. These avian-glycan specific IgM MAbs may prove to be particularly useful for determining the HA concentration in monovalent egg-derived pandemic influenza vaccines, in which the HA concentration may be lower than 5µg/ml. The HA detection limit in the ELISA assays developed in this study was 1.9µg/ml, as opposed to the 5µg/ml quantitation limit generally accepted for the standard single-radial-immunodiffusion (SRID) assay, the approved technique for quantifying HA content in influenza vaccines. These ELISAs can also be used to quantify influenza HA formulated with emulsion-based or mineral salt adjuvants that could interfere with HA measurement by the SRID assay.


Assuntos
Anticorpos Monoclonais , Antígenos Virais/análise , Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Imunoglobulina M , Vírus da Influenza A/crescimento & desenvolvimento , Vacinas contra Influenza/química , Polissacarídeos/imunologia , Animais , Antígenos Virais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunodifusão/métodos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...