Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 3): 134893, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168213

RESUMO

Clinacanthus nutans (C. nutans) is a plant in tropical Asia with proven biological activities. The optimized extraction method of C. nutans crude polysaccharide (CNP) uses water in the presence of an ultrasound-assisted mechanical method (UL_CNP). However, the use of UL_CNP for the synthesis and optimization of silver nanoparticles (AgNP), particularly their anticancer and photocatalytic properties, remains unexplored. Hence, this research aimed to employ a green method using UL_CNP and silver nitrate to produce AgNP (UL_AgNP) with a small size and assess its potential toxicity, anticancer, and photocatalytic activities. The synthesis condition was optimized using the Box-Behnken design method. The synthesized UL_AgNP showed the surface plasmon resonance peak at 458 nm. The optimized synthesis condition produced spherically shaped UL_AgNP with a size of 5.21 ± 1.92 nm and a zeta potential of -26.33 ± 0.93 mV. An X-ray diffraction analysis exhibited intense Bragg's reflection peaks at (111), (200), (220), and (311), having a face-centered cubic structure of AgNP. Attenuated total reflectance-Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy further confirmed the presence of silver in the synthesized UL_AgNP. The brine shrimp lethality test of UL_AgNP reported a lethal concentration 50 value of <7.8 µg/mL after 24 h. The UL_AgNP exhibited antiproliferative activity against MCF-7 cells with a half-maximal inhibitory concentration value of 4.96 ± 0.31 µg/mL by inducing S-phase cell cycle arrest, apoptotic effect, and reduction of cell migration. Furthermore, UL_AgNP proved its efficient photocatalytic activity against methylene blue dye (50.22 % ± 0.06 %, after 10 min at a concentration of 50 µg/mL). Therefore, the UL_AgNP exhibited promising antiproliferative activity against MCF-7 cells, highlighting their potential as a therapeutic agent. Further investigations are needed to elucidate the precise mechanism of their action.


Assuntos
Acanthaceae , Química Verde , Nanopartículas Metálicas , Micro-Ondas , Extratos Vegetais , Polissacarídeos , Prata , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Humanos , Acanthaceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Artemia/efeitos dos fármacos
2.
Pharm Biol ; 59(1): 494-503, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33905665

RESUMO

CONTEXT: Pectin is a plant heteropolysaccharide that is biocompatible and biodegradable, enabling it to be an excellent reducing agent (green synthesis) for metallic nanoparticles (MNPs). Nevertheless, in the biological industry, pectin has been left behind in synthesising MNPs, for no known reason. OBJECTIVE: To systematically review the biological activities of pectin synthesised MNPs (Pe-MNPs). METHODS: The databases Springer Link, Scopus, ScienceDirect, Google Scholar, PubMed, Mendeley, and ResearchGate were systematically searched from the date of their inception until 10th February 2020. Pectin, green synthesis, metallic nanoparticles, reducing agent and biological activities were among the key terms searched. The data extraction was focussed on the biological activities of Pe-MNPs and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for systematic reviews. RESULTS: A total of 15 studies outlined 7 biological activities of Pe-MNPs in the only three metals that have been explored, namely silver (Ag), gold (Au) and cerium oxide (CeO2). The activities reported from the in vitro and in vivo studies were antimicrobial (9 studies), anticancer (2 studies), drug carrier (3 studies), non-toxic (4 studies), antioxidant (2 studies), wound healing (1 study) and anti-inflammation (1 study). CONCLUSIONS: This systematic review demonstrates the current state of the art of Pe-MNPs biological activities, suggesting that Ag and Au have potent antibacterial and anticancer/chemotherapeutic drug carrier activity, respectively. Further in vitro, in vivo, and clinical research is crucial for a better understanding of the pharmacological potential of pectin synthesised MNPs.


Assuntos
Química Verde/métodos , Nanopartículas Metálicas/química , Pectinas/química , Animais , Cério/química , Portadores de Fármacos/química , Ouro/química , Humanos , Substâncias Redutoras/química , Prata/química
3.
Oxid Med Cell Longev ; 2019: 1202676, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531177

RESUMO

Malaysian Tualang honey (TH) is a known therapeutic honey extracted from the honeycombs of the Tualang tree (Koompassia excelsa) and has been reported for its antioxidant, anti-inflammatory, antiproliferative, and wound healing properties. However, the possible vascular protective effect of TH against oxidative stress remains unclear. In this study, the effects of TH on hydrogen peroxide- (H2O2-) elicited vascular hyperpermeability in human umbilical vein endothelial cells (HUVECs) and Balb/c mice were evaluated. Our data showed that TH concentrations ranging from 0.01% to 1.00% showed no cytotoxic effect to HUVECs. Induction with 0.5 mM H2O2 was found to increase HUVEC permeability, but the effect was significantly reversed attenuated by TH (p < 0.05), of which the permeability with the highest inhibition peaked at 0.1%. In Balb/c mice, TH (0.5 g/kg-1.5 g/kg) significantly (p < 0.05) reduced H2O2 (0.3%)-induced albumin-bound Evans blue leak, in a dose-dependent manner. Immunofluorescence staining confirmed that TH reduced actin stress fiber formation while increasing cortical actin formation and colocalization of caveolin-1 and ß-catenin in HUVECs. Signaling studies showed that HUVECs pretreated with TH significantly (p < 0.05) decreased intracellular calcium release, while sustaining the level of cAMP when challenged with H2O2. These results suggested that TH could inhibit H2O2-induced vascular hyperpermeability in vitro and in vivo by suppression of adherence junction protein redistribution via calcium and cAMP, which could have a therapeutic potential for diseases related to the increase of both oxidant and vascular permeability.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Mel , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peróxido de Hidrogênio/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Malásia , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA