Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(41): 48216-48224, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37793090

RESUMO

Indoor air contamination by phthalate ester (PAE) derivatives has become a significant concern since traces of PAEs can cause endocrine disruption, among other health issues. PAE abatement from the environment is thus mandatory to further ensure a good quality of indoor air. Herein, we explored the physisorption-based capture of volatile PAEs by metal-organic frameworks (MOFs). A high-throughput computational screening approach was first applied on databases compiling more than 20,000 MOF structures in order to identify the best MOFs for adsorbing traces of dimethyl phthalate (DMP), considered as a representative molecule of the family of PAE contaminants. Among the 20 top candidates, MOF-74(Ni), which combines substantial DMP uptake at the 10 ppm concentration level (∼0.20 g g-1) with high adsorption enthalpy at infinite dilution (-ΔHads(DMP),0 = 109.9 kJ mol-1), was revealed as an excellent porous material to capture airborne DMP. This prediction was validated by further experiments: gravimetric sorption isotherms were carried out on MOF-74(Ni), replacing DMP by dimethyl maleate (DMM), a molecule with a higher vapor pressure and indeed easier to manipulate compared to DMP while mimicking the adsorption behavior of DMP by MOFs, as evidenced by Monte Carlo calculations. Notably, saturation of DMM by MOF-74(Ni) (∼0.35 g g-1 at 343 K) occurs at very low equivalent concentration of the sorbate, i.e., 15 ppm, while half of the DMM molecules remain trapped in the MOF pores, even by heating the system up to 473 K under vacuum. This computational-experimental study reveals for the first time the potential of MOFs for the capture of phthalate ester contaminants as vapors of key importance to address indoor air quality issues.

2.
ACS Appl Mater Interfaces ; 15(28): 33675-33681, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418687

RESUMO

MIL-101(Cr) films were deposited on the quartz crystal microbalance and interdigitated electrode transductors as humidity sensors. Both devices combine high sensitivity with fast response/recovery times, good repeatability, long-term stability, favorable selectivity versus toluene alongside a dual mode behavior in the optimal domain of humidity for indoor air.

3.
Chem Commun (Camb) ; 59(46): 7064-7067, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212211

RESUMO

A dual computational/experimental approach enabled ranking of the performance of a series of MOFs for α-pinene capture in terms of affinity and uptake. UiO-66(Zr) is demonstrated to be a good candidate for adsorbing α-pinene at sub-ppm levels, while MIL-125(Ti)-NH2 shows ideal performances for abating α-pinene at concentrations encountered in indoor air.

4.
ACS Appl Mater Interfaces ; 14(48): 53777-53787, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416767

RESUMO

The pollution of indoor air is a major worldwide concern in our modern society for people's comfort, health, and safety. In particular, toluene, present in many substances including paints, thinners, candles, leathers, cosmetics, inks, and glues, affects the human health even at very low concentrations throughout its action on the central nervous system. Its prevalence in many workplace environments can fluctuate considerably, which led to firm regulation with exposure limits varying between 50 and 400 ppm depending on exposure time. This therefore requires the development of technologies for an accurate detection of this contaminant. Metal-organic frameworks have been proposed as promising candidates to detect and monitor a series of molecules at even extremely low concentrations owing to the high tunability of their functionality. Herein, a high-throughput Monte Carlo screening approach was devised to identify the best MOFs from the computation-ready, experimental (CoRE) metal-organic framework (MOF) density-derived electrostatic and chemical (DDEC) database for the selective capture of toluene from air at room temperature, with the consideration of a ternary mixture composed of extremely low-level concentration of toluene (10 ppm) in oxygen and nitrogen to mimic the composition of air. An aluminum MOF, DUT-4, with channel-like micropores was identified as an excellent candidate for the selective adsorption of toluene from air with a predicted adsorption uptake of 0.5 g/g at 10 ppm concentration and room temperature. The toluene adsorption behavior of DUT-4 at low equivalent concentrations, alongside its sensing performance, was further experimentally investigated by its incorporation in a quartz crystal microbalance sensor, confirming the promises of DUT-4. Decisively, the resulting high sensitivity and fast kinetics of our developed sensor highlight the applicability of this hand-in-hand computational-experimental methodology to porous material screening for sensing applications.

5.
ACS Appl Mater Interfaces ; 14(15): 17531-17538, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380791

RESUMO

Volatile methylsiloxanes (VMSs) are common silicone degradation byproducts that cause serious concern for the contamination of sensitive electronics and optics, among others. With the goal of fast, online detection of VMS, we herein highlight the mesoporous MIL-101(Cr) MOF as a promising mass sensing layer for integration with a quartz crystal microbalance (QCM), using an in-house modified gravimetric adsorption system capable of achieving extremely low concentrations of siloxane D4 (down to 0.04 ppm), targeting applications for monitoring in indoor spaces and spacecraft. Our developed MIL-101(Cr)@QCM sensor achieves near-perfect reversibility with no hysteresis alongside excellent repeatability over cycling and fast response/recovery times under 1 min. We attribute this capability to optimum host/guest interactions as uncovered through molecular simulations.

6.
Dalton Trans ; 50(43): 15914-15923, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34723313

RESUMO

A highly performing proton conducting composite was prepared through the impregnation of EMIMCl ionic liquid in the mesoporous MIL-101(Cr)-SO3H MOF. The resulting EMIMCl@MIL-101(Cr)-SO3H composite displays high thermal and chemical stability, alongside retention of a high amount of EMIMCl even at temperatures as high as 500 K, as well as under moisture conditions. Remarkably, this composite exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-S) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. This makes EMIMCl@MIL-101(Cr)-SO3H a unique candidate to act as a solid state proton conductor for PEMFC applications under versatile conditions.

7.
ACS Appl Mater Interfaces ; 13(17): 20194-20200, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885276

RESUMO

The proton-conducting performances of a microporous Ti-based metal-organic framework (MOF), MIP-207, were successfully tuned using a multicomponent ligand replacement strategy to gradually introduce a controlled amount of sulfonic acid groups as a source of Brönsted acidic sites while keeping the robustness and ecofriendly synthesis conditions of the starting material. Typically, multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1-x were prepared by combining various ratios of trimesate 1,3,5-benzenetricarboxylate (BTC) moieties and 5-SO3H-isophthalate (SO3H-IPA). The best sulfonic-MOF candidate that combines structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10-2 S cm-1 at 363 K/95% relative humidity) was further investigated using ab initio molecular dynamics simulations. These calculations supported that the -SO3H groups act as proton donors and revealed that the proton transfer mechanism results from the solvation structure of protons through the fast Zundel/hydronium interconversion along the continuous H-bonded network connecting the adsorbed water molecules.

8.
ACS Mater Lett ; 2(4): 438-445, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296781

RESUMO

In theory, bimetallic UiO-66(Zr:Ce) and UiO-66(Zr:Hf) metal-organic frameworks (MOFs) are extremely versatile and attractive nanoporous materials as they combine the high catalytic activity of UiO-66(Ce) or UiO-66(Hf) with the outstanding stability of UiO-66(Zr). Using in situ high-pressure powder X-ray diffraction, however, we observe that this expected mechanical stability is not achieved when incorporating cerium or hafnium in UiO-66(Zr). This observation is akin to the earlier observed reduced thermal stability of UiO-66(Zr:Ce) compounds. To elucidate the atomic origin of this phenomenon, we chart the loss-of-crystallinity pressures of 22 monometallic and bimetallic UiO-66 materials and systematically isolate their intrinsic mechanical stability from their defect-induced weakening. This complementary experimental/computational approach reveals that the intrinsic mechanical stability of these bimetallic MOFs decreases nonlinearly upon cerium incorporation but remains unaffected by the zirconium: hafnium ratio. Additionally, all experimental samples suffer from defect-induced weakening, a synthesis-controlled effect that is observed to be independent of their intrinsic stability.

9.
Angew Chem Int Ed Engl ; 59(26): 10353-10358, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32187798

RESUMO

An innovative strategy is proposed to synthesize single-crystal nanowires (NWs) of the Al3+ dicarboxylate MIL-69(Al) MOF by using graphene oxide nanoscrolls as structure-directing agents. MIL-69(Al) NWs with an average diameter of 70±20 nm and lengths up to 2 µm were found to preferentially grow along the [001] crystallographic direction. Advanced characterization methods (electron diffraction, TEM, STEM-HAADF, SEM, XPS) and molecular modeling revealed the mechanism of formation of MIL-69(Al) NWs involving size-confinement and templating effects. The formation of MIL-69(Al) seeds and the self-scroll of GO sheets followed by the anisotropic growth of MIL-69(Al) crystals are mediated by specific GO sheets/MOF interactions. This study delivers an unprecedented approach to control the design of 1D MOF nanostructures and superstructures.

10.
Chem Commun (Camb) ; 55(88): 13251-13254, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31621701

RESUMO

Water adsorption/desorption isotherms of Cr-soc-MOF-1 were monitored electrically, with the translation of proton conductivity measurements to physisorption isotherms in terms of S-shape and hysteresis features revealed by volumetry. Molecular modelling further established the relationship between the evolutive water-hydrogen bonded network and the "electrical" isotherm for this water-mediated proton conducting MOF.

11.
Chem Asian J ; 14(20): 3561-3565, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125184

RESUMO

Post-synthesis modification of MIL-101(Cr)-NO2 was explored in order to decorate the organic backbone by propyl-sulfonic groups, with the aim to incorporate mobile and acidic protons for solid-state proton electrolyte applications. The resulting solid switched from insulating towards proton superconductive behavior under humidity, while the conductivity recorded at 363 K and 95 % relative humidity reached 4.8×10-3  S cm-1 . Propitiously, the impregnation of the material by strong acidic molecules (H2 SO4 ) further boosted the proton conductivity performances up to the remarkable σ value of 1.3×10-1  S cm-1 at 363 K/95 % RH, which reaches the performances of the best proton conductive MOF reported so far.

12.
Nat Commun ; 9(1): 4937, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467390

RESUMO

Proton conductive materials are of significant importance and highly desired for clean energy-related applications. Discovery of practical metal-organic frameworks (MOFs) with high proton conduction remains a challenge due to the use of toxic chemicals, inconvenient ligand preparation and complication of production at scale for the state-of-the-art candidates. Herein, we report a zirconium-MOF, MIP-202(Zr), constructed from natural α-amino acid showing a high and steady proton conductivity of 0.011 S cm-1 at 363 K and under 95% relative humidity. This MOF features a cost-effective, green and scalable preparation with a very high space-time yield above 7000 kg m-3 day-1. It exhibits a good chemical stability under various conditions, including solutions of wide pH range and boiling water. Finally, a comprehensive molecular simulation was carried out to shed light on the proton conduction mechanism. All together these features make MIP-202(Zr) one of the most promising candidates to approach the commercial benchmark Nafion.


Assuntos
Aminoácidos/química , Estruturas Metalorgânicas/química , Prótons , Zircônio/química , Cristalografia por Raios X , Condutividade Elétrica , Eletrólitos/química , Polímeros de Fluorcarboneto/química , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/ultraestrutura , Microscopia Eletrônica de Varredura , Estrutura Molecular
13.
Dalton Trans ; 47(44): 15827-15834, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30358783

RESUMO

Kinetic CO2 adsorption measurements in the water-stable and permanently microporous Metal-organic framework material, Mg-CUK-1, reveal a 1.8-fold increase in CO2 capture from 4.6 wt% to 8.5 wt% in the presence of 18% relative humidity. Thermodynamic CO2 uptake experiments corroborate this enhancement effect, while grand canonical Monte Carlo simulations also support the phenomenon of a humidity-induced increase in the CO2 sorption capacity in Mg-CUK-1. Molecular simulations were implemented to gain insight into the microscopic adsorption mechanism responsible for the observed CO2 sorption enhancement. These simulations indicate that the cause of increasing CO2 adsorption enthalpy in the presence of H2O is due to favorable intermolecular interactions between the co-adsorbates confined within the micropores of Mg-CUK-1.

14.
J Am Chem Soc ; 140(41): 13156-13160, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30226772

RESUMO

A hydrolytically stable metal-organic framework (MOF) material, named KAUST-7', was derived from a structural phase change of KAUST-7 upon exposure to conditions akin to protonic conduction (363 K/95% relative humidity). KAUST 7' exhibited a superprotonic conductivity as evidenced by the impedance spectroscopic measurement revealing an exceptional conductivity up to 2.0 × 10-2 S cm-1 at 363 K and under 95% RH, a performance maintained over 7 days. Ab initio molecular dynamics simulations suggested that the water-mediated proton transport mechanism is governed by water assisted reorganization of the H-bond network involving the fluorine moieties in KAUST-7' and the guest water molecules. The notable level of performances combined with a very good hydrolytic stability positions KAUST-7' as a prospective proton-exchange membrane alternative to the commercial benchmark Nafion. Furthermore, the remarkable RH sensitivity of KAUST-7' conductivity, substantially higher than previously reported MOFs, offers great opportunities for deployment as a humidity sensor.

15.
Nat Commun ; 9(1): 1660, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695794

RESUMO

Porous titanium oxide materials are attractive for energy-related applications. However, many suffer from poor stability and crystallinity. Here we present a robust nanoporous metal-organic framework (MOF), comprising a Ti12O15 oxocluster and a tetracarboxylate ligand, achieved through a scalable synthesis. This material undergoes an unusual irreversible thermally induced phase transformation that generates a highly crystalline porous product with an infinite inorganic moiety of a very high condensation degree. Preliminary photophysical experiments indicate that the product after phase transformation exhibits photoconductive behavior, highlighting the impact of inorganic unit dimensionality on the alteration of physical properties. Introduction of a conductive polymer into its pores leads to a significant increase of the charge separation lifetime under irradiation. Additionally, the inorganic unit of this Ti-MOF can be easily modified via doping with other metal elements. The combined advantages of this compound make it a promising functional scaffold for practical applications.

16.
ACS Omega ; 3(10): 12878-12885, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458012

RESUMO

In the recent years, polyborate anions have been considered as possible candidates for energy. In aqueous solutions, they have been studied as either hydrogen carriers or anodic fuels. In the solid state (as an alkali salt), they have been seen as solid electrolytes. Herein, we focus on sodium 1-oxa-nido-dodecaborate NaB11H12O, a novel possible candidate for the aforementioned applications. The compound is soluble in water, and its stability depends on pH: under acidic conditions, it readily hydrolyzes while liberating hydrogen, and under alkaline conditions, it is stable, which is a feature searched for an anodic fuel. Over bulk platinum, gold, or silver electrode, oxidation takes place. The best performance has been noticed for the silver electrode. In the solid state, NaB11H12O shows Na+ conductivity at a high temperature of up to 150 °C. All of these properties are presented in detail, and hereafter they are discussed while giving indications of what have to be developed to open up more realistic prospectives for NaB11H12O in energy.

17.
Angew Chem Int Ed Engl ; 55(12): 3919-24, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26889765

RESUMO

The water stable UiO-66(Zr)-(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10(-3)  S cm(-1) at 90 °C and 95 % relative humidity. Quasi-elastic neutron scattering measurements combined with aMS-EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen-bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton-conduction mechanism at the molecular level in a highly conductive MOF.

18.
Dalton Trans ; 44(44): 19357-69, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26498167

RESUMO

A series of thermally stable Hofmann-type clathrate structures with the general formula M(pz)[M'(CN)4], where M and M' are bivalent metal ions M(II) = Ni(II), Co(II), M(II)' = Ni(II), Pd(II), Pt(II), and pz is the pyrazine bidentate ligand, was synthesized and investigated for the efficient entrapment of iodine (I2) in solution and in the gas phase. Iodine-containing clathrates thus prepared were analysed to determine the saturation capacity, thermal stability, guest-induced structural changes of the clathrate's lattice and the nature of the confined iodine according to the chemical composition of the host structure. An efficient confinement of about 1 I2 per unit cell is observed for the series of clathrates with the Ni(II) and Pd(II) ions in the square planar position whatever the bivalent metal ion in the octahedral position. Specific responses in the lattice adjustment are detected for Co(II) in the octahedral and Pd(II) in the square planar positions.

19.
Inorg Chem ; 53(9): 4269-71, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24746100

RESUMO

The thermally stable Hofmann-type clathrate framework Ni(II)(pz)[Ni(II)(CN)4] (pz = pyrazine) was investigated for the efficient and reversible sorption of iodine (I2) in the gaseous phase and in solution with a maximum adsorption capacity of 1 mol of I2 per 1 mol of Ni(II)(pz)[Ni(II)(CN)4] in solution.

20.
Phys Chem Chem Phys ; 12(39): 12478-85, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20721377

RESUMO

The breathing behaviour of MIL-53(Cr) and MIL-53(Fe) upon water and ethanol desorption has been investigated by combining complementary experimental techniques including ThermoGravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Complex Impedance Spectroscopy (CIS). It was shown that two stages of solvent departure are involved in the desorption process, as revealed by (i) a change of the weight loss gradient in the TGA curve, (ii) the existence of a second endothermic peak in the DSC signal and (iii) a sudden drop and/or profile change of the ac conductivity in CIS. All these features are observed around a typical temperature T(c), for which the framework contractions, caused by the solvent desorption, occur. Moreover, it is shown that these modifications are more pronounced when the magnitude of the breathing is higher, as illustrated by the comparison of the water/MIL-53(Cr), ethanol/MIL-53(Cr) and water/MIL-53(Fe) systems. CIS data were further analyzed in the light of DFT calculations which provided the preferential arrangements of the molecules within the pores and the resulting host/guest interactions. It could then be proposed that (i) the polarization conductivity results from the local re-orientation of the µ(2)-OH dipoles bonded to the metal atom from the hybrid solid, i.e. Fe or Cr, and (ii) that dc conductivity, which can be ascribed to a proton propagation via a Grotthus mechanism, is favoured when the solvent molecules form strong hydrogen bonds between each other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...