Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255421

RESUMO

BACKGROUND: Parkinsonism is caused by dopamine (DA) insufficiency and results in a hypokinetic movement disorder. Treatment with L-Dopa can restore DA availability and improve motor function, but patients can develop L-Dopa-induced dyskinesia (LID), a secondary hyperkinetic movement disorder. The mechanism underlying LID remains unknown, and new treatments are needed. Experiments in mice have shown that DA deficiency promotes an imbalance between striatal acetylcholine (ACh) and DA that contributes to motor dysfunction. While treatment with L-Dopa improves DA availability, it promotes a paradoxical rise in striatal ACh and a further increase in the ACh to DA ratio may promote LID. METHODS: We used conditional Slc6a3DTR/+ mice to model progressive DA deficiency and the ß-adrenergic receptor (ß-AR) antagonist propranolol to limit the activity of striatal cholinergic interneurons (ChIs). DA-deficient mice were treated with L-Dopa and the dopa decarboxylase inhibitor benserazide. LID and motor performance were assessed by rotarod, balance beam, and open field testing. Electrophysiological experiments characterized the effects of ß-AR ligands on striatal ChIs. RESULTS: LID was observed in a subset of DA-deficient mice. Treatment with propranolol relieved LID and motor hyperactivity. Electrophysiological experiments showed that ß-ARs can effectively modulate ChI firing. CONCLUSIONS: The work suggests that pharmacological modulation of ChIs by ß-ARs might provide a therapeutic option for managing LID.

2.
J Neurosci ; 40(43): 8233-8247, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32994336

RESUMO

Transmembrane AMPA receptor regulatory proteins (TARPs) are auxiliary AMPA receptor subunits that play a key role in receptor trafficking and in modulating receptor gating. The ability of TARPs to slow both deactivation and desensitization is isoform specific. However, TARP isoform-specific modulation of receptor properties remains uncharacterized. Here, we compare the isoform-specific effects of γ-2, γ-3, γ-4, and γ-8 TARPs on recovery from desensitization and responses to pairs of brief applications of glutamate. All four isoforms were able to reduce receptor-mediated paired-pulse depression and significantly speed recovery from desensitization in an isoform-specific manner. In the presence of TARPs, recovery time courses were observed to contain two components, fast and slow. The proportion of fast and slow components was determined by the TARP isoform. The time constant of recovery was also altered by the duration of glutamate application. When studies with TARP chimeras were performed, TARP extracellular loops were found to play a vital role in TARP modulation of recovery. Thus, isoform-specific differences in TARP modulation of recovery from desensitization influence receptor responses to repeated brief applications of glutamate, and these differences may impact frequency-dependent synaptic signaling in the mammalian central nervous system.SIGNIFICANCE STATEMENT AMPA receptors are major determinants of excitatory synaptic strength. The channel kinetics of AMPA receptors contribute to the kinetics of synaptic transmission. Transmembrane AMPA receptor regulatory proteins (TARPs) auxiliary subunits can modulate the decay kinetics of AMPA receptors. However, whether TARP isoforms specifically modulate receptor recovery is unclear. Here, we investigated the recovery kinetics of AMPA receptors by expressing various TARP isoforms and chimeras. We observed that the TARP isoforms and duration of glutamate application uniquely modulate time constants and the proportion of fast and slow components through a previously unidentified TARP domain. Given the impact of recovery kinetics on receptor responses to repetitive stimulation such as synaptic transmission, this work will be of great interest in the field of excitatory synaptic transmission research.


Assuntos
Proteínas Nucleares/fisiologia , Receptores de AMPA/fisiologia , Linhagem Celular , Espaço Extracelular/fisiologia , Ácido Glutâmico/farmacologia , Humanos , Isomerismo , Cinética , Proteínas Mutantes Quiméricas , Proteínas Nucleares/química , Técnicas de Patch-Clamp , Receptores de AMPA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
3.
J Physiol ; 594(13): 3705-27, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27094216

RESUMO

KEY POINTS: Purkinje cells of the cerebellum receive ∼180,000 parallel fibre synapses, which have often been viewed as a homogeneous synaptic population and studied using single action potentials. Many parallel fibre synapses might be silent, however, and granule cells in vivo fire in bursts. Here, we used trains of stimuli to study parallel fibre inputs to Purkinje cells in rat cerebellar slices. Analysis of train EPSCs revealed two synaptic components, phase 1 and 2. Phase 1 is initially large and saturates rapidly, whereas phase 2 is initially small and facilitates throughout the train. The two components have a heterogeneous distribution at dendritic sites and different pharmacological profiles. The differential sensitivity of phase 1 and phase 2 to inhibition by pentobarbital and NBQX mirrors the differential sensitivity of AMPA receptors associated with the transmembrane AMPA receptor regulatory protein, γ-2, gating in the low- and high-open probability modes, respectively. ABSTRACT: Cerebellar granule cells fire in bursts, and their parallel fibre axons (PFs) form ∼180,000 excitatory synapses onto the dendritic tree of a Purkinje cell. As many as 85% of these synapses have been proposed to be silent, but most are labelled for AMPA receptors. Here, we studied PF to Purkinje cell synapses using trains of 100 Hz stimulation in rat cerebellar slices. The PF train EPSC consisted of two components that were present in variable proportions at different dendritic sites: one, with large initial EPSC amplitude, saturated after three stimuli and dominated the early phase of the train EPSC; and the other, with small initial amplitude, increased steadily throughout the train of 10 stimuli and dominated the late phase of the train EPSC. The two phases also displayed different pharmacological profiles. Phase 2 was less sensitive to inhibition by NBQX but more sensitive to block by pentobarbital than phase 1. Comparison of synaptic results with fast glutamate applications to recombinant receptors suggests that the high-open-probability gating mode of AMPA receptors containing the auxiliary subunit transmembrane AMPA receptor regulatory protein γ-2 makes a substantial contribution to phase 2. We argue that the two synaptic components arise from AMPA receptors with different functional signatures and synaptic distributions. Comparisons of voltage- and current-clamp responses obtained from the same Purkinje cells indicate that phase 1 of the EPSC arises from synapses ideally suited to transmit short bursts of action potentials, whereas phase 2 is likely to arise from low-release-probability or 'silent' synapses that are recruited during longer bursts.


Assuntos
Cerebelo/fisiologia , Células de Purkinje/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Técnicas In Vitro , Masculino , Oócitos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Xenopus
4.
Eur J Neurosci ; 39(7): 1138-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24712993

RESUMO

The gating behavior of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors is modulated by association with the auxiliary proteins: transmembrane AMPA receptor regulatory proteins (TARPs) and neuropilin tolloid-like (Netos), respectively. Although the mechanisms underlying receptor modulation differ for both AMPA and kainate receptors, association with these auxiliary subunits results in the appearance of a slow component in the decay of ensemble responses to rapid applications of saturating concentrations of glutamate. We show here that these components arise from distinct gating behaviors, characterized by substantially higher open probability (Popen ), which we only observe when core subunits are associated with their respective auxiliary partners. We refer to these behaviors as gating modes, because individual receptors switch between the low- and high-Popen gating on a time-scale of seconds. At any given time, association of AMPA and kainate receptors with their auxiliary subunits results in a heterogeneous receptor population, some of which are in the high-Popen mode and others that display gating behavior similar to that seen for receptors formed from core subunits alone. While the switching between modes is infrequent, the presence of receptors displaying both types of gating has a large impact on both the kinetics and amplitude of ensemble currents similar to those seen at synapses.


Assuntos
Ativação do Canal Iônico , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Potenciais de Ação , Linhagem Celular , Ácido Glutâmico/metabolismo , Humanos , Ácido Caínico/metabolismo , Multimerização Proteica , Subunidades Proteicas/metabolismo
5.
J Neurochem ; 110(1): 92-105, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19453375

RESUMO

Ca(2+) influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca(2+)/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo. Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear. We show that phosphorylation status at Ser1303 enables NR2B to distinguish between the Ca(2+)/calmodulin activated form and the autonomously active Thr286-autophosphorylated form of CaMKII. Green fluorescent protein-alpha-CaMKII co-expressed with NR2B sequence in human embryonic kidney 293 cells was used to study intracellular binding between the two proteins. Binding in vitro was studied by glutathione-S-transferase pull-down assay. Thr286-autophosphorylated alpha-CaMKII or the autophosphorylation mimicking mutant, T286D-alpha-CaMKII, binds NR2B sequence independent of Ca(2+)/calmodulin unlike native wild-type alpha-CaMKII. We show enhancement of this binding by Ca(2+)/calmodulin. Phosphorylation or a phosphorylation mimicking mutation on NR2B (NR2B-S1303D) abolishes the Ca(2+)/calmodulin-independent binding whereas it allows the Ca(2+)/calmodulin-dependent binding of alpha-CaMKII in vitro. Similarly, the autonomously active mutants, T286D-alpha-CaMKII and F293E/N294D-alpha-CaMKII, exhibited Ca(2+)-independent binding to non-phosphorylatable mutant of NR2B under intracellular conditions. We also show for the first time that phosphatases in the brain such as protein phosphatase 1 and protein phosphatase 2A dephosphorylate phospho-Ser1303 on NR2B.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Sítios de Ligação/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Humanos , Insetos , Mutação/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...