Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(4): 645-658, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723037

RESUMO

Immunoassays are used for many applications in various markets, from clinical diagnostics to the food industry, generally relying on gold-standard ELISAs that are sensitive, robust, and cheap but also time-consuming and labour intensive. As an alternative, we propose here the magnetically localized and wash-free fluorescence immunoassay (MLFIA): a no-wash assay to directly measure a biomolecule concentration, without mixing nor washing steps. To do so, a fluorescence no-wash measurement is performed to generate a detectable signal. It consists of a differential measurement between the fluorescence of fluorophores bound to magnetic nanoparticles specifically captured by micro-magnets against the residual background fluorescence of unbound fluorophores. Targeted biomolecules (antibodies or antigens) are locally concentrated on micro-magnet lines, with the number of captured biomolecules quantitatively measured without any washing step. The performance of the MLFIA platform is assessed and its use is demonstrated with several biological models as well as clinical blood samples for HIV, HCV and HBV detection, with benchmarking to standard analyzers of healthcare laboratories. Thus, we demonstrated for the first time the versatility of the innovative MLFIA platform. We highlighted promising performances with the successful quantitative detection of various targets (antigens and antibodies), in different biological samples (serum and plasma), for different clinical tests (HCV, HBV, HIV).


Assuntos
Infecções por HIV , Hepatite C , Humanos , Imunoensaio , Anticorpos , Ensaio de Imunoadsorção Enzimática , Hepatite C/diagnóstico
2.
Soft Matter ; 14(14): 2671-2681, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29564433

RESUMO

Micro-magnets producing magnetic field gradients as high as 106 T m-1 have been used to efficiently trap nanoparticles with a magnetic core of just 12 nm in diameter. Particle capture efficiency increases with increasing particle concentration. Comparison of measured capture kinetics with numerical modelling reveals that a threshold concentration exists below which capture is diffusion-driven and above which it is convectively-driven. This comparison also shows that two-way fluid-particle coupling is responsible for the formation of convective cells, the size of which is governed by the height of the droplet. Our results indicate that for a suspension with a nanoparticle concentration suitable for bioassays (around 0.25 mg ml-1), all particles can be captured in less than 10 minutes. Since nanoparticles have a significantly higher surface-to-volume ratio than the more widely used microparticles, their efficient capture should contribute to the development of next generation digital microfluidic lab-on-chip immunoassays.

3.
Rev Sci Instrum ; 89(2): 023705, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495853

RESUMO

We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

4.
Nanotechnology ; 25(39): 395704, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25201242

RESUMO

The magnetic anisotropy of a planar array of GaxFe(4 - x)N nanocrystals (NCs) embedded in a GaN host is studied by ferromagnetic resonance. X-ray diffraction and transmission electron microscopy are employed to determine the phase and distribution of the nanocrystals. The magnetic anisotropy is found to be primarily uniaxial with the hard axis normal to the NCs plane and to have a comparably weak in-plane hexagonal symmetry. The origin of the magnetic anisotropy is discussed taking into consideration the morphology of the nanocrystals, the epitaxial relations, strain effects and magnetic coupling between the NCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...