Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 9(12): ofac641, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601554

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has demonstrated the need to share data and biospecimens broadly to optimize clinical outcomes for US military Veterans. Methods: In response, the Veterans Health Administration established VA SHIELD (Science and Health Initiative to Combat Infectious and Emerging Life-threatening Diseases), a comprehensive biorepository of specimens and clinical data from affected Veterans to advance research and public health surveillance and to improve diagnostic and therapeutic capabilities. Results: VA SHIELD now comprises 12 sites collecting de-identified biospecimens from US Veterans affected by SARS-CoV-2. In addition, 2 biorepository sites, a data processing center, and a coordinating center have been established under the direction of the Veterans Affairs Office of Research and Development. Phase 1 of VA SHIELD comprises 34 157 samples. Of these, 83.8% had positive tests for SARS-CoV-2, with the remainder serving as contemporaneous controls. The samples include nasopharyngeal swabs (57.9%), plasma (27.9%), and sera (12.5%). The associated clinical and demographic information available permits the evaluation of biological data in the context of patient demographics, clinical experience and management, vaccinations, and comorbidities. Conclusions: VA SHIELD is representative of US national diversity with a significant potential to impact national healthcare. VA SHIELD will support future projects designed to better understand SARS-CoV-2 and other emergent healthcare crises. To the extent possible, VA SHIELD will facilitate the discovery of diagnostics and therapeutics intended to diminish COVID-19 morbidity and mortality and to reduce the impact of new emerging threats to the health of US Veterans and populations worldwide.

2.
Cancer Discov ; 10(9): 1296-1311, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32371478

RESUMO

The molecular mechanisms leading to resistance to PD-1 blockade are largely unknown. Here, we characterize tumor biopsies from a patient with melanoma who displayed heterogeneous responses to anti-PD-1 therapy. We observe that a resistant tumor exhibited a loss-of-function mutation in the tumor suppressor gene FBXW7, whereas a sensitive tumor from the same patient did not. Consistent with a functional role in immunotherapy response, inactivation of Fbxw7 in murine tumor cell lines caused resistance to anti-PD-1 in immunocompetent animals. Loss of Fbxw7 was associated with altered immune microenvironment, decreased tumor-intrinsic expression of the double-stranded RNA (dsRNA) sensors MDA5 and RIG1, and diminished induction of type I IFN and MHC-I expression. In contrast, restoration of dsRNA sensing in Fbxw7-deficient cells was sufficient to sensitize them to anti-PD-1. Our results thus establish a new role for the commonly inactivated tumor suppressor FBXW7 in viral sensing and sensitivity to immunotherapy. SIGNIFICANCE: Our findings establish a role of the commonly inactivated tumor suppressor FBXW7 as a genomic driver of response to anti-PD-1 therapy. Fbxw7 loss promotes resistance to anti-PD-1 through the downregulation of viral sensing pathways, suggesting that therapeutic reactivation of these pathways could improve clinical responses to checkpoint inhibitors in genomically defined cancer patient populations.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteína 7 com Repetições F-Box-WD/genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral/transplante , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Modelos Animais de Doenças , Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Células HeLa , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Mutação com Perda de Função , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
3.
Proc Natl Acad Sci U S A ; 112(49): 15066-71, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598667

RESUMO

Tissue-thin parchment made it possible to produce the first pocket Bibles: Thousands were made in the 13th century. The source of this parchment, often called "uterine vellum," has been a long-standing controversy in codicology. Use of the Latin term abortivum in many sources has led some scholars to suggest that the skin of fetal calves or sheep was used. Others have argued that it would not be possible to sustain herds if so many pocket Bibles were produced from fetal skins, arguing instead for unexpected alternatives, such as rabbit. Here, we report a simple and objective technique using standard conservation treatments to identify the animal origin of parchment. The noninvasive method is a variant on zooarchaeology by mass spectrometry (ZooMS) peptide mass fingerprinting but extracts protein from the parchment surface by using an electrostatic charge generated by gentle rubbing of a PVC eraser on the membrane surface. Using this method, we analyzed 72 pocket Bibles originating in France, England, and Italy and 293 additional parchment samples that bracket this period. We found no evidence for the use of unexpected animals; however, we did identify the use of more than one mammal species in a single manuscript, consistent with the local availability of hides. These results suggest that ultrafine vellum does not necessarily derive from the use of abortive or newborn animals with ultrathin hides, but could equally well reflect a production process that allowed the skins of maturing animals of several species to be rendered into vellum of equal quality and fineness.


Assuntos
Mapeamento de Peptídeos/métodos , Pele/química , Animais , Arqueologia , História Medieval , Espectrometria de Massas
4.
Nat Biotechnol ; 33(1): 58-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437882

RESUMO

Human induced pluripotent stem cells (hiPSCs) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV), episomal (Epi) and mRNA transfection mRNA methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Humanos
5.
Proc Natl Acad Sci U S A ; 111(24): 8889-94, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889605

RESUMO

Nonhomologous end-joining (NHEJ) is a key pathway for efficient repair of DNA double-strand breaks (DSBs) and V(D)J recombination. NHEJ defects in humans cause immunodeficiency and increased cellular sensitivity to ionizing irradiation (IR) and are variably associated with growth retardation, microcephaly, and neurodevelopmental delay. Repair of DNA DSBs is important for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). To compare the specific contribution of DNA ligase 4 (LIG4), Artemis, and DNA-protein kinase catalytic subunit (PKcs) in this process and to gain insights into phenotypic variability associated with these disorders, we reprogrammed patient-derived fibroblast cell lines with NHEJ defects. Deficiencies of LIG4 and of DNA-PK catalytic activity, but not Artemis deficiency, were associated with markedly reduced reprogramming efficiency, which could be partially rescued by genetic complementation. Moreover, we identified increased genomic instability in LIG4-deficient iPSCs. Cell cycle synchronization revealed a severe defect of DNA repair and a G0/G1 cell cycle arrest, particularly in LIG4- and DNA-PK catalytically deficient iPSCs. Impaired myeloid differentiation was observed in LIG4-, but not Artemis- or DNA-PK-mutated iPSCs. These results indicate a critical importance of the NHEJ pathway for somatic cell reprogramming, with a major role for LIG4 and DNA-PKcs and a minor, if any, for Artemis.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Células-Tronco Pluripotentes Induzidas/citologia , Catálise , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA , Endonucleases , Fibroblastos/metabolismo , Fibroblastos/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Mutação , Proteínas Nucleares/metabolismo , Fenótipo
6.
Cell Cycle ; 11(16): 2985-90, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825249

RESUMO

Induced pluripotent stem cells (iPSC) hold significant promise for advancing biomedical research. In the case of monogenic diseases, patient-iPSC and their derivatives contain the disease-causing mutation, suggesting the possibility of recapitulating salient disease features in vitro. Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The etiology of bone marrow failure in FA remains largely unclear, but limited studies on patient bone marrow cells indicate cell intrinsic defects as causative. We examined the feasibility of modeling FA in a system based on hematopoietic differentiation of patient-specific iPSC. An informative iPSC-based model is predicated on the ability to derive disease-specific (uncorrected) patient iPSC that contain the disease-causing mutation, are pluripotent, maintain a normal karyotype and are capable of hematopoietic differentiation. Careful analysis of hematopoietic differentiation of such iPSC holds the promise of uncovering new insights into bone marrow failure and may enable high-throughput screening with the goal of identifying compounds that ameliorate hematopoietic failure. Ultimately, genetic correction, molecular characterization and successful engraftment of iPSC-derived cells may provide an attractive alternative to current hematopoietic stem cell-targeted gene therapy in some monogenic diseases, including FA.


Assuntos
Anemia de Fanconi/patologia , Hematopoese , Células-Tronco Hematopoéticas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Animais , Reprogramação Celular , Aberrações Cromossômicas , Cromossomos Humanos/genética , Corpos Embrioides/patologia , Anemia de Fanconi/genética , Fibroblastos/patologia , Humanos , Metáfase , Camundongos , Camundongos SCID , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Blood ; 119(23): 5449-57, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22371882

RESUMO

Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs.


Assuntos
Anemia de Fanconi/genética , Terapia Genética/métodos , Hematopoese , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células Cultivadas , Dano ao DNA , Anemia de Fanconi/metabolismo , Anemia de Fanconi/terapia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Deleção de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...