Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 29(11): 1563-72, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18199478

RESUMO

Polyetheretherketone (PEEK) is used as an alternative to titanium in medical devices. Previous in vitro studies examining PEEK have differed in their choice of polymer variant [PEEK or carbon-fiber reinforced PEEK (CFR-PEEK)], source of polymer (some of which are no longer available or for implantation) and cell type. While all studies demonstrated favorable cytocompatibility of the PEEK material, no studies are available which reflect the current state of the art of the material. Here, we use different forms of the only implantable grade PEEK available. These are compared with commercially pure titanium (cpTi) Grade 1 using a human primary osteoblast model. Sample materials were presented as industrially relevant surfaces. Machined or injection molded PEEK and CFR-PEEK were evaluated along with polished (Ra=0.200microm) and rough (Ra=0.554microm) cpTi. Osteoblast adhesion at 4h on injection molded variants of PEEK (Ra=0.095microm) and CFR-PEEK (Ra=0.350microm) material was comparable to titanium. Machined variants of PEEK (Ra=0.902microm) and CFR-PEEK (Ra=1.106microm) materials were significantly less. Proliferation at 48h determined by [(3)H]-thymidine incorporation was the greatest on the smoothest of all materials, the injection molded unfilled PEEK, which was significantly higher than the rough titanium control. The machined unfilled PEEK had the lowest DNA synthesis. RT-PCR for alkaline phosphatase, Type I collagen and osteocalcin normalized to glyceraldehyde-3-phosphate dehydrogenase revealed different patterns of mRNA levels. High mRNA levels for Type I collagen showed that CFR-PEEK stimulated osteoblast differentiation, whilst injection molded unfilled PEEK was less differentiated. Machined unfilled PEEK had comparable message levels of bone matrix proteins as rough titanium. All material variants permitted a degree of mineralization. Scanning electron microscopy at 3 days and 2 weeks in differentiation medium showed that human osteoblasts were well spread on all the different substrates. The varied response reported here at different time points during the study suggests that material formulation (unfilled PEEK or CFR-PEEK), subjection to industrial processing, surface roughness and topography may all influence the cellular response of osteoblasts to PEEK. Thus, differences in human osteoblast responses were found to the various samples of PEEK, but implantable grade PEEK, in general, was comparable in vitro to the bone forming capacity of rough titanium.


Assuntos
Cetonas/farmacologia , Osteoblastos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Titânio/farmacologia , Adulto , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Benzofenonas , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/genética , Feminino , Humanos , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/genética , Polímeros
2.
Biomaterials ; 28(32): 4845-69, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17686513

RESUMO

Since the 1980s, polyaryletherketones (PAEKs) have been increasingly employed as biomaterials for trauma, orthopedic, and spinal implants. We have synthesized the extensive polymer science literature as it relates to structure, mechanical properties, and chemical resistance of PAEK biomaterials. With this foundation, one can more readily appreciate why this family of polymers will be inherently strong, inert, and biocompatible. Due to its relative inertness, PEEK biomaterials are an attractive platform upon which to develop novel bioactive materials, and some steps have already been taken in that direction, with the blending of HA and TCP into sintered PEEK. However, to date, blended HA-PEEK composites have involved a trade-off in mechanical properties in exchange for their increased bioactivity. PEEK has had the greatest clinical impact in the field of spine implant design, and PEEK is now broadly accepted as a radiolucent alternative to metallic biomaterials in the spine community. For mature fields, such as total joint replacements and fracture fixation implants, radiolucency is an attractive but not necessarily critical material feature.


Assuntos
Materiais Biocompatíveis/química , Cetonas/química , Polietilenoglicóis/química , Próteses e Implantes , Ferimentos e Lesões/terapia , Benzofenonas , Humanos , Polímeros , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA