Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2783: 53-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478226

RESUMO

The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.


Assuntos
Células-Tronco Adultas , Criopreservação , Adulto , Humanos , Tecido Adiposo , Sobrevivência Celular , Criopreservação/métodos , Crioprotetores/farmacologia , Congelamento
2.
ACS Appl Mater Interfaces ; 16(14): 17339-17346, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531044

RESUMO

Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.


Assuntos
Caenorhabditis elegans , Nanopartículas , Animais , Magnetismo , Imãs , Campos Magnéticos
3.
Anal Methods ; 15(35): 4351-4376, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37615701

RESUMO

Lateral flow assays (LFAs) are a popular method for quick and affordable diagnostic testing because they are easy to use, portable, and user-friendly. However, LFA design has always faced challenges regarding sensitivity, accuracy, and complexity of the operation. By integrating new technologies and reagents, the sensitivity and accuracy of LFAs can be improved while minimizing the complexity and potential for false positives. Surface enhanced Raman spectroscopy (SERS), photoacoustic techniques, fluorescence resonance energy transfer (FRET), and the integration of smartphones and thermal readers can improve LFA accuracy and sensitivity. To ensure reliable and accurate results, careful assay design and validation, appropriate controls, and optimization of assay conditions are necessary. Continued innovation in LFA technology is crucial to improving the reliability and accuracy of rapid diagnostic testing and expanding its applications to various areas, such as food testing, water quality monitoring, and environmental testing.

4.
Bioengineering (Basel) ; 10(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508786

RESUMO

Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.

5.
Biosensors (Basel) ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979608

RESUMO

A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Células Neoplásicas Circulantes , Humanos , Ressonância de Plasmônio de Superfície/métodos , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos
6.
Sensors (Basel) ; 24(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202898

RESUMO

Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , Biomarcadores , Progressão da Doença , Perfilação da Expressão Gênica
7.
Bioengineering (Basel) ; 9(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36290508

RESUMO

Following an earlier study, we reexamined the latent heat of fusion during freezing at 5 K/min of twelve different pre-nucleated solute-laden aqueous solutions using a Differential Scanning Calorimeter (DSC) and correlated it with the amount of initially dissolved solids or solutes in the solution. In general, a decrease in DSC-measured heat release (in comparison to that of pure water, 335 mJ/mg) was observed with an increasing fraction of dissolved solids or solutes, as observed in the earlier study. In addition, the kinetics of ice crystallization was also obtained in three representative biological media by performing additional experiments at 1, 5 and 20 K/min. A model of ice crystallization based on the phase diagram of a water-NaCl binary solution and a modified Avrami-like model of kinetics was then developed and fit to the experimental data. Concurrently, a heat and mass transfer model of the freezing of a salt solution in a small container is also presented to account for the effect of the cooling rate as well as the solute concentration on the measured latent of freezing. This diffusion-based model of heat and mass transfer was non-dimensionalized, solved using a numerical scheme and compared with experimental results. The simulation results show that the heat and mass transfer model can predict (± 10%) the experimental results.

8.
Adv Funct Mater ; 31(43)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34924914

RESUMO

Stem cell-based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non-destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping-based machine learning analysis is reported to distinguish differentiating human adipose-derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single-cell resolution. The label-free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton-based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix-assisted laser desorption/ionization-mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label-free identification of stem cell differentiation with high spatial and chemical resolution.

9.
Tissue Eng Part A ; 27(7-8): 479-488, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528293

RESUMO

International regulatory agencies such as the Food and Drug Administration have mandated that the scientific community develop humanized microphysiological systems (MPS) as an in vitro alternative to animal models in the near future. While the breast cancer research community has long appreciated the importance of three-dimensional growth dynamics in their experimental models, there are remaining obstacles preventing a full conversion to humanized MPS for drug discovery and pathophysiological studies. This perspective evaluates the current status of human tissue-derived cells and scaffolds as building blocks for an "idealized" breast cancer MPS based on bioengineering design principles. It considers the utility of adipose tissue as a potential source of endothelial, lymphohematopoietic, and stromal cells for the support of breast cancer epithelial cells. The relative merits of potential MPS scaffolds derived from adipose tissue, blood components, and synthetic biomaterials is evaluated relative to the current "gold standard" material, Matrigel, a murine chondrosarcoma-derived basement membrane-enriched hydrogel. The advantages and limitations of a humanized breast cancer MPS are discussed in the context of in-process and destructive read-out assays. Impact statement Regulatory authorities have highlighted microphysiological systems as an emerging tool in breast cancer research. This has been led by calls for more predictive human models and reduced animal experimentation. This perspective describes how human-derived cells, extracellular matrices, and hydrogels will provide the building blocks to create breast cancer models that accurately reflect diversity at multiple levels, that is, patient ethnicity, pathophysiology, and metabolic status.


Assuntos
Neoplasias da Mama , Animais , Bioengenharia , Feminino , Humanos , Camundongos , Estados Unidos
10.
Stem Cells Dev ; 30(5): 265-288, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33397204

RESUMO

While several microRNAs (miRNAs) that regulate the endotheliogenesis and further promote angiogenesis have been identified in various cancers, the identification of miRNAs that can drive the differentiation of adipose derived stromal/stem cells (ASCs) into the endothelial lineage has been largely unexplored. In this study, CD34+ ASCs sorted using magnetic bead separation were induced to differentiate along the endothelial pathway. miRNA sequencing of ASCs at day 3, 9, and 14 of endothelial differentiation was performed on Ion Proton sequencing system. The data obtained by this high-throughput method were aligned to the human genome HG38, and the differentially expressed miRNAs during endothelial differentiation at various time points (day 3, 9, and 14) were identified. The gene targets of the identified miRNAs were obtained through miRWalk database. The network-pathway analysis of miRNAs and their targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) bioinformatic tools to determine the potential candidate miRNAs that promote endothelial differentiation. Based on these analyses, six upregulated miRNAs (miR-181a-5p, miR-330-5p, miR-335-3p, miR-15b-5p, miR-99a-5p, and miR-199a-5p) and six downregulated miRNAs (miR-145-5p, miR-155-5p, miR-193a-3p, miR-125a-5p, miR-221-5p, and miR-222-3p) were chosen for further studies. In vitro evaluation of these miRNAs to induce endothelial differentiation when transfected into CD34+ sorted ASCs was studied using Von Willebrand Factor (VWF) staining and quantitative real time-polymerase chain reaction (qRT-PCR). Our results suggest that miRNAs: 335-5p, 330-5p, 181a-5p and anti-miRNAs: 125a-5p, 145-5p can likely induce endothelial differentiation in CD34+ sorted ASCs. Further studies are clearly required to elucidate the specific mechanisms on how miRNAs or anti-miRNAs identified through bioinformatics approach can induce the endotheliogenesis in ASCs.


Assuntos
Antígenos CD34/metabolismo , Diferenciação Celular/genética , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , RNA-Seq/métodos , Separação Celular/métodos , Células Cultivadas , Células Endoteliais/citologia , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Óxido Nítrico Sintase Tipo III/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução de Sinais/genética , Fatores de Tempo , Fator de von Willebrand/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32755036

RESUMO

Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Assuntos
Imageamento Hiperespectral , Nanopartículas , Nanoestruturas , Microscopia , Análise Espectral Raman
12.
Cryobiology ; 96: 137-144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32687840

RESUMO

Subcutaneous adipose tissue is a rich source of stromal vascular fraction (SVF) and adipose-derived stromal/stem cells (ASCs) that are inherently multipotent and exhibit regenerative properties. In current practice, lipoaspirate specimens harvested from liposuction surgeries are routinely discarded as a biohazard waste due to a lack of simple, cost effective, and validated cryopreservation protocols. The aim of this study is to develop a xenoprotein-free cryoprotective agent cocktail that will allow for short-term (up to 6 months) preservation of lipoaspirate tissues suitable for fat grafting and/or stromal/stem cell isolation when stored at achievable temperatures (-20 °C or -80 °C). Lipoaspirates donated by three consenting healthy donors undergoing elective cosmetic liposuction surgeries were suspended in five freezing media (FM1: 10% DMSO and 35% BSA; FM2: 2% DMSO and 43% BSA; FM3: 10% DMSO and 35% lipoaspirate saline; FM4: 2% DMSO and 6% HSA; and FM5: 40% lipoaspirate saline and 10% PVP) all suspended in 1X DMEM/F12 and frozen using commercially available freezers (-20 °C or -80 °C) and stored at least for a 1 month. After 1 month of freezing storage, SVF cells and ASCs were isolated from the frozen-thawed lipoaspirates by digestion with collagenase type I. Cell viability was evaluated by fluorescence microscopy after staining with acridine orange and ethidium bromide. The SVF isolated from lipoaspirates frozen at -80 °C retained comparable cell viability with the tested freezing media (FM2, FM3, FM4) comparable with the conventional DMSO and animal serum media (FM1), whereas the FM5 media resulted in lower viability. In contrast, tissues frozen and stored at -20 °C did not yield live SVF cells after thawing and collagenase digestion. The surface marker expression (CD90, CD29, CD34, CD146, CD31, and CD45) of ASCs from frozen lipoaspirates at -80 °C in different cryoprotectant media were also evaluated and no significant differences were found between the groups. The adipogenic and osteogenic differentiation potential were studied by histochemical staining and gene expression by qRT-PCR. Oil Red O staining for adipogenesis revealed that the CPA media FM1, FM4 and FM5 displayed robust differentiation. Alizarin Red S staining for osteogenesis revealed that FM1 and FM4 media displayed superior differentiation in comparison to other tested media. Measurement of adipogenic and osteogenic gene expression by qRT-PCR provided similar outcomes and indicated that FM4 CPA media comparable with FM1 for adipogenesis and osteogenesis.


Assuntos
Criopreservação , Osteogênese , Tecido Adiposo , Animais , Diferenciação Celular , Células Cultivadas , Criopreservação/métodos , Congelamento , Células-Tronco
13.
Sci Rep ; 9(1): 11800, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409848

RESUMO

Adipose-derived stromal/stem cells (ASCs) are multipotent in nature that can be differentiated into various cells lineages such as adipogenic, osteogenic, and chondrogenic. The commitment of a cell to differentiate into a particular lineage is regulated by the interplay between various intracellular pathways and their resultant secretome. Similarly, the interactions of cells with the extracellular matrix (ECM) and the ECM bound growth factors instigate several signal transducing events that ultimately determine ASC differentiation. In this study, RNA-sequencing (RNA-Seq) was performed to identify the transcriptome profile of osteogenic induced ASCs to understand the associated genotype changes. Gene ontology (GO) functional annotations analysis using Database for Annotation Visualization and Integrated Discovery (DAVID) bioinformatics resources on the differentially expressed genes demonstrated the enrichment of pathways mainly associated with ECM organization and angiogenesis. We, therefore, studied the expression of genes coding for matrisome proteins (glycoproteins, collagens, proteoglycans, ECM-affiliated, regulators, and secreted factors) and ECM remodeling enzymes (MMPs, integrins, ADAMTSs) and the expression of angiogenic markers during the osteogenesis of ASCs. The upregulation of several pro-angiogenic ELR+ chemokines and other angiogenic inducers during osteogenesis indicates the potential role of the secretome from differentiating ASCs in the vascular development and its integration with the bone tissue. Furthermore, the increased expression of regulatory genes such as CTNNB1, TGBR2, JUN, FOS, GLI3, and MAPK3 involved in the WNT, TGF-ß, JNK, HedgeHog and ERK1/2 pathways suggests the regulation of osteogenesis through interplay between these pathways. The RNA-Seq data was also validated by performing QPCR on selected up- and down-regulated genes (COL10A1, COL11A1, FBLN, FERMT1, FN1, FOXF1, LAMA3, LAMA4, LAMB1, IGF1, WNT10B, MMP1, MMP3, MMP16, ADAMTS6, and ADAMTS14).


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Transcriptoma/genética , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , RNA-Seq , Transdução de Sinais/genética
14.
ACS Biomater Sci Eng ; 5(5): 2147-2159, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33405717

RESUMO

Various types of alloys and polymers are utilized in orthopedic implants. However, there are still several issues accompanied by the use of prosthetic materials, such as low wear performance and catastrophic failure. Surface enhancement of biomaterials is a promising method that can improve the success rate of prosthetic operations without negatively affecting their bulk properties while improving the biocompatibility of implants and reducing infections. Nonthermal plasma treatment has become a ubiquitous surface modification method in sterilization and healthcare applications. However, the clinical applications of such an approach have been limited due to the lack of detailed studies delineating the wear behavior and biocompatibility of implants after plasma treatment. In this study, we have employed a handheld piezoelectric direct discharge (PDD) plasma generator to modify the surface of two common metallic (Ti6Al4V) and nonmetallic (GUR1020 polymer) biomaterials used typically in joint and disc replacements. We have observed an approximately 60-fold reduction in tribological wear rate along with a 2- to 3-fold increase in the biocompatibility properties of plasma coated samples compared to noncoated (untreated) surfaces, respectively. Our study introduces a novel application of nonthermal PDD plasma technology that is capable of increasing the quality and success rate of joint and disc replacements.

15.
Biomed Mater ; 14(1): 015001, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30355851

RESUMO

Thiol-acrylate polymers have therapeutic potential as biocompatible scaffolds for bone tissue regeneration. Synthesis of a novel cyto-compatible and biodegradable polymer composed of trimethylolpropane ethoxylate triacrylate-trimethylolpropane tris (3-mercaptopropionate) (TMPeTA-TMPTMP) using a simple amine-catalyzed Michael addition reaction is reported in this study. This study explores the impact of molecular weight and crosslink density on the cyto-compatibility of human adipose derived mesenchymal stem cells. Eight groups were prepared with two different average molecular weights of trimethylolpropane ethoxylate triacrylate (TMPeTA 692 and 912) and four different concentrations of diethylamine (DEA) as catalyst. The materials were physically characterized by mechanical testing, wettability, mass loss, protein adsorption and surface topography. Cyto-compatibility of the polymeric substrates was evaluated by LIVE/DEAD staining® and DNA content assay of cultured human adipose derived stem cells (hASCs) on the samples over over days. Surface topography studies revealed that TMPeTA (692) samples have island pattern features whereas TMPeTA (912) polymers showed pitted surfaces. Water contact angle results showed a significant difference between TMPeTA (692) and TMPeTA (912) monomers with the same DEA concentration. Decreased protein adsorption was observed on TMPeTA (912) -16% DEA compared to other groups. Fluorescent microscopy also showed distinct hASCs attachment behavior between TMPeTA (692) and TMPeTA (912), which is due to their different surface topography, protein adsorption and wettability. Our finding suggested that this thiol-acrylate based polymer is a versatile, cyto-compatible material for tissue engineering applications with tunable cell attachment property based on surface characteristics.


Assuntos
Acrilatos/química , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Adsorção , Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Adesão Celular , Dietilaminas/química , Humanos , Teste de Materiais , Microscopia de Fluorescência , Peso Molecular , Polímeros/química , Regeneração , Estresse Mecânico , Compostos de Sulfidrila , Propriedades de Superfície , Alicerces Teciduais/química , Molhabilidade
16.
Sci Rep ; 8(1): 8162, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802353

RESUMO

Over the last decade and half, the optimization of cryopreservation for adipose tissue derived stromal/stem cells (ASCs) especially in determining the optimal combination of cryoprotectant type, cooling rate, and thawing rate have been extensively studied. In this study, we examined the functionality of ASCs that have been frozen-stored for more than 10 years denoted as long-term freezing, frozen within the last 3 to 7 years denoted as short-term freezing and compared their response with fresh ASCs. The mean post-thaw viability for long-term frozen group was 78% whereas for short-term frozen group 79% with no significant differences between the two groups. The flow cytometry evaluation of stromal surface markers, CD29, CD90, CD105, CD44, and CD73 indicated the expression (above 95%) in passages P1-P4 in all of the frozen-thawed ASC groups and fresh ASCs whereas the hematopoietic markers CD31, CD34, CD45, and CD146 were expressed extremely low (below 2%) within both the frozen-thawed and fresh cell groups. Quantitative real time polymerase chain reaction (qPCR) analysis revealed some differences between the osteogenic gene expression of long-term frozen group in comparison to fresh ASCs. Intriguingly, one group of cells from the short-term frozen group exhibited remarkably higher expression of osteogenic genes in comparison to fresh ASCs. The adipogenic differentiation potential remained virtually unchanged between all of the frozen-thawed groups and the fresh ASCs. Long-term cryopreservation of ASCs, in general, has a somewhat negative impact on the osteogenic potential of ASCs, especially as it relates to the decrease in osteopontin gene expression but not significantly so with respect to RUNX2 and osteonectin gene expressions. However, the adipogenic potential, post thaw viability, and immunophenotype characteristics remain relatively intact between all the groups.


Assuntos
Tecido Adiposo/citologia , Criopreservação , Células-Tronco/citologia , Adipogenia , Adulto , Sobrevivência Celular , Feminino , Humanos , Pessoa de Meia-Idade , Osteogênese , Fatores de Tempo
17.
Methods Mol Biol ; 1773: 41-51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29687380

RESUMO

The creation of single and multilayered adult stem cells (ASCs) sheets is presented. The stem cell sheets preserve the cell-cell and cell-extracellular matrices and are developed by utilizing a thermally reversible methylcellulose (MC) coated tissue culture polystyrene (TCPS) dish. This technique is an improvement and a simplification of earlier noninvasive cell retrieval methods based on the use of a temperature-responsive poly(N-isopropylacrylamide) (PIPAAm) coated TCPS dishes. The optimal combination of MC-water-salt was determined to be 12-14% of MC (mol. wt. of 15,000) in water with 0.5× PBS (~150 mOsm). This solution exhibited a gel formation temperature of ~32 °C. The addition (evenly spread) of 1 ml of 3 mg/ml rat tail type-I (pH adjusted to 7.5) over the MC coated surface at 37 °C improves ASC adhesion and proliferation on the methylcellulose system. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the MC hydrogel system. When the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C), it spontaneously and gradually detached from the surface of the thermoresponsive hydrogel, creating an ASC sheet.


Assuntos
Hidrogéis/farmacologia , Metilcelulose/farmacologia , Temperatura , Resinas Acrílicas/química , Células-Tronco Adultas/química , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/química , Colágeno Tipo I/farmacologia , Humanos , Hidrogéis/química , Metilcelulose/química , Poliestirenos/química , Ratos , Água/química
18.
Methods Mol Biol ; 1773: 231-259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29687394

RESUMO

The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown to be most promising but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.


Assuntos
Tecido Adiposo/citologia , Criopreservação/métodos , Crioprotetores/farmacologia , Células-Tronco Mesenquimais/citologia , Adipogenia , Adulto , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Congelamento , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Metilcelulose/farmacologia , Osteogênese , Povidona/farmacologia
19.
Minerva Ginecol ; 70(4): 387-401, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29527868

RESUMO

To model the cryobiological responses of cells and tissues, the cellular membrane permeability characteristics are often measured at suprazero temperatures as well as at subzero temperatures with and without the presence of extra-cellular ice. These measured membrane permeability characteristics are then used to predict the responses of cells and tissues for a given thermal insult with the ultimate aim of mitigating the damage caused during the freeze-thaw process. This brief review articles summarizes efforts from my research group over the past 15 years as related to cryobiology of mammalian ovarian tissue sections, i.e., the known knowns as well as the critical cryobiological knowledge that is still lacking to rationally design optimal cryopreservation protocols for ovarian tissues, i.e., the known unknowns.


Assuntos
Criobiologia/métodos , Criopreservação/métodos , Ovário/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Feminino , Humanos , Mamíferos , Temperatura
20.
Plast Reconstr Surg ; 141(2): 232e-243e, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29369990

RESUMO

BACKGROUND: Adipose tissue is a source of adipose-derived stromal/stem cells for tissue engineering and reconstruction and a tissue source for fat grafts. Although liposuction is a simple procedure for the harvest of adipose tissue, the repetition of this surgical intervention can cause adverse effects to the patient and can be a limiting factor for immediate use. Cryopreservation can avoid the morbidity associated with repetitive liposuction, allowing the use of stored tissue after the initial harvest procedure. This article focuses on the characterization of fresh and cryopreserved human adipose tissue. METHODS: Lipoaspirates from eight donors were processed as fresh adipose tissue or cryopreserved for 4 to 6 weeks. Fresh and cryopreserved tissues were collagenase digested and the stromal vascular fraction cells were characterized immediately or cryopreserved. Characterization was based on stromal vascular fraction cell proliferation and immunophenotype. In vivo fat grafting was performed in C57BL/6 green fluorescent protein mice to analyze morphology of the tissue and its adiposity using confocal microscopy, histochemical staining (i.e., hematoxylin and eosin and Masson trichrome), and immunohistochemistry (i.e., green fluorescent protein, perilipin, and CD31). RESULTS: Although tissue and stromal vascular fraction cell cryopreservation reduced the total cell yield, the remaining viable cells retained their adhesive and proliferative properties. The stromal vascular fraction cell immunophenotype showed a significant reduction in the hematopoietic surface markers and increased expression of stromal and adipogenic markers following cryopreservation. In vivo cryopreserved fat grafts showed morphology similar to that of freshly implanted fat grafts. CONCLUSION: In this study, the authors demonstrated that cryopreserved adipose tissue is a potential source of stromal vascular fraction cells and a suitable source for fat grafts.


Assuntos
Adipócitos/fisiologia , Tecido Adiposo/transplante , Criopreservação , Sobrevivência de Enxerto/fisiologia , Células Estromais/fisiologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Adulto , Animais , Biomarcadores/metabolismo , Vasos Sanguíneos/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Lipectomia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...