Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38947073

RESUMO

Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous delivery of soluble FMS-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84 and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered intravenously (i.v.) or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1 f/f mice through i.v. injection followed by brain AVM induction. Transduced cells in different organs, vessel density and abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain ECs and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and skeletal muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. Delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1 f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.

2.
JACC Basic Transl Sci ; 9(5): 674-686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38984052

RESUMO

The adult mammalian heart harbors minute levels of cycling cardiomyocytes (CMs). Large numbers of images are needed to accurately quantify cycling events using microscopy-based methods. CardioCount is a new deep learning-based pipeline to rigorously score nuclei in microscopic images. When applied to a repository of 368,434 human microscopic images, we found evidence of coupled growth between CMs and cardiac endothelial cells in the adult human heart. Additionally, we found that vascular rarefaction and CM hypertrophy are interrelated in end-stage heart failure. CardioCount is available for use via GitHub and via Google Colab for users with minimal machine learning experience.

3.
Transl Stroke Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977637

RESUMO

Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous (i.v.) delivery of soluble Feline McDonough Sarcoma (FMS)-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84, and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered i.v. or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1f/f mice through i.v. followed by bAVM induction. Transduced cells in organs, vessel density, abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain endothelial cells (ECs) and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. The delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.

4.
Nat Commun ; 13(1): 5947, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36210364

RESUMO

Recombinant adeno-associated viral (AAV) vectors are a promising gene delivery platform, but ongoing clinical trials continue to highlight a relatively narrow therapeutic window. Effective clinical translation is confounded, at least in part, by differences in AAV biology across animal species. Here, we tackle this challenge by sequentially evolving AAV capsid libraries in mice, pigs and macaques. We discover a highly potent, cross-species compatible variant (AAV.cc47) that shows improved attributes benchmarked against AAV serotype 9 as evidenced by robust reporter and therapeutic gene expression, Cre recombination and CRISPR genome editing in normal and diseased mouse models. Enhanced transduction efficiency of AAV.cc47 vectors is further corroborated in macaques and pigs, providing a strong rationale for potential clinical translation into human gene therapies. We envision that ccAAV vectors may not only improve predictive modeling in preclinical studies, but also clinical translatability by broadening the therapeutic window of AAV based gene therapies.


Assuntos
Dependovirus , Edição de Genes , Animais , Dependovirus/metabolismo , Terapia Genética , Vetores Genéticos/genética , Humanos , Macaca/genética , Camundongos , Suínos , Transdução Genética
5.
Front Cardiovasc Med ; 9: 833335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224061

RESUMO

BACKGROUND: The optimal delivery route to enhance effectiveness of regenerative therapeutics to the human heart is poorly understood. Direct intra-myocardial (IM) injection is the gold standard, however, it is relatively invasive. We thus compared targeted IM against less invasive, catheter-based intra-coronary (IC) delivery to porcine myocardium for the acute retention of nanoparticles using cardiac magnetic resonance (CMR) imaging and viral vector transduction using qPCR. METHODS: Ferumoxytol iron oxide (IO) nanoparticles (5 ml) were administered to Yorkshire swine (n = 13) by: (1) IM via thoracotomy, (2) catheter-based IC balloon-occlusion (BO) with infusion into the distal left anterior descending (LAD) coronary artery, (3) IC perforated side-wall (SW) infusion into the LAD, or (4) non-selective IC via left main (LM) coronary artery infusion. Hearts were harvested and imaged using at 3T whole-body MRI scanner. In separate Yorkshire swine (n = 13), an adeno-associated virus (AAV) vector was similarly delivered, tissue harvested 4-6 weeks later, and viral DNA quantified from predefined areas at risk (apical LV/RV) vs. not at risk in a potential mid-LAD infarct model. Results were analyzed using pairwise Student's t-test. RESULTS: IM delivery yielded the highest IO retention (16.0 ± 4.6% of left ventricular volume). Of the IC approaches, BO showed the highest IO retention (8.7 ± 2.2% vs. SW = 5.5 ± 4.9% and LM = 0%) and yielded consistent uptake in the porcine distal LAD territory, including the apical septum, LV, and RV. IM delivery was limited to the apex and anterior wall, without septal retention. For the AAV delivery, the BO was most efficient in the at risk territory (Risk: BO = 6.0 × 10-9, IM = 1.4 × 10-9, LM = 3.2 × 10-10 viral copies per µg genomic DNA) while all delivery routes were comparable in the non-risk territory (BO = 1.7 × 10-9, IM = 8.9 × 10-10, LM = 1.2 × 10-9). CONCLUSIONS: Direct IM injection has the highest local retention, while IC delivery with balloon occlusion and distal infusion is the most effective IC delivery technique to target therapeutics to a heart territory most in risk from an infarct.

6.
Nat Commun ; 12(1): 6239, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716331

RESUMO

Adeno-associated viruses (AAV) rely on helper viruses to transition from latency to lytic infection. Some AAV serotypes are secreted in a pre-lytic manner as free or extracellular vesicle (EV)-associated particles, although mechanisms underlying such are unknown. Here, we discover that the membrane-associated accessory protein (MAAP), expressed from a frameshifted open reading frame in the AAV cap gene, is a novel viral egress factor. MAAP contains a highly conserved, cationic amphipathic domain critical for AAV secretion. Wild type or recombinant AAV with a mutated MAAP start site (MAAPΔ) show markedly attenuated secretion and correspondingly, increased intracellular retention. Trans-complementation with MAAP restored secretion of multiple AAV/MAAPΔ serotypes. Further, multiple processing and analytical methods corroborate that one plausible mechanism by which MAAP promotes viral egress is through AAV/EV association. In addition to characterizing a novel viral egress factor, we highlight a prospective engineering platform to modulate secretion of AAV vectors or other EV-associated cargo.


Assuntos
Dependovirus/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Membrana Celular/química , Dependovirus/patogenicidade , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microrganismos Geneticamente Modificados/metabolismo , Domínios Proteicos , Proteínas Virais/química , Proteínas Virais/genética
7.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894463

RESUMO

Central nervous system (CNS) transduction by systemically administered recombinant adeno-associated viral (AAV) vectors requires crossing the blood-brain barrier (BBB). We recently mapped a structural footprint on the AAVrh.10 capsid, which, when grafted onto the AAV1 capsid (AAV1RX), enables viral transport across the BBB; however, the underlying mechanisms remain unknown. Here, we establish through structural modeling that this footprint overlaps in part the sialic acid (SIA) footprint on AAV1. We hypothesized that altered SIA-capsid interactions may influence the ability of AAV1RX to transduce the CNS. Using AAV1 variants with altered SIA footprints, we map functional attributes of these capsids to their relative SIA dependence. Specifically, capsids with ablated SIA binding can penetrate and transduce the CNS with low to moderate efficiency. In contrast, AAV1 shows strong SIA dependency and does not transduce the CNS after systemic administration and, instead, transduces the vasculature and the liver. The AAV1RX variant, which shows an intermediate SIA binding phenotype, effectively enters the brain parenchyma and transduces neurons at levels comparable to the level of AAVrh.10. In corollary, the reciprocal swap of the AAV1RX footprint onto AAVrh.10 (AAVRX1) attenuated CNS transduction relative to that of AAVrh.10. We conclude that the composition of residues within the capsid variable region 1 (VR1) of AAV1 and AAVrh.10 profoundly influences tropism, with altered SIA interactions playing a partial role in this phenotype. Further, we postulate a Goldilocks model, wherein optimal glycan interactions can influence the CNS transduction profile of AAV capsids.IMPORTANCE Understanding how viruses cross the blood-brain barrier can provide insight into new approaches to block infection by pathogens or the ability to exploit these pathways for designing new recombinant viral vectors for gene therapy. In this regard, modulation of virus-carbohydrate interactions by mutating the virion shell can influence the ability of recombinant viruses to cross the vascular barrier, enter the brain, and enable efficient gene transfer to neurons.


Assuntos
Barreira Hematoencefálica/metabolismo , Dependovirus/genética , Ácido N-Acetilneuramínico/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Sistema Nervoso Central/virologia , Dependovirus/metabolismo , Terapia Genética/métodos , Vetores Genéticos , Células HEK293 , Humanos , Ligação Proteica/genética , Transdução Genética/métodos , Tropismo/genética , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...