Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 73(7): 2135-43, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17277198

RESUMO

Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods.


Assuntos
Bacillus/metabolismo , Epsilonproteobacteria/metabolismo , Nanopartículas , Telúrio/metabolismo , Anaerobiose , Bacillus/crescimento & desenvolvimento , Transporte de Elétrons , Microscopia Eletrônica , Espectrofotometria Ultravioleta , Análise Espectral Raman , Telúrio/química
2.
Org Lett ; 7(26): 5749-52, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16354057

RESUMO

[reaction: see text] Formation of a controlled fullerene mesophase within an organic host system has enabled us to create high-power conversion efficiency photovoltaics. This mesophase is formed using thermal gradients that provide a fluidic mobility of the fullerenes allowing for greater dispersion of nanocrystalline 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C61 (PCBM) within regioregular poly(3-hexylthiophene) (P3HT). From this reorganization of the component materials in the matrix the overall efficiency of the system jumps dramatically from the roughly 2.4% to 5.2%.

3.
J Phys Chem B ; 109(10): 4455-63, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851517

RESUMO

Resonant Raman spectroscopy and transmission electron microscopy were used to characterize the structural changes of three single-walled carbon nanotube samples processed with purification, pelletization, and surfactant-assisted dispersion. A two-stage purification process selectively removes metallic tubes as well as small-diameter ones, enriching large-diameter semiconducting tubes. Pelletizing reduces the intertube distance but greatly increases the intensity ratio of the D band to the G band. Single-walled nanotube (SWNT) bundle size decreases during ultrasonication dispersion aided by a surfactant. SWNT bundles composed of large-diameter tubes are prone to debundling.


Assuntos
Carbono/química , Nanotubos/química , Microscopia Eletrônica de Transmissão , Nanotecnologia , Análise Espectral Raman , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...