Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 29(15): 4057-66, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19470759

RESUMO

Regulation of the Saccharomyces cerevisiae HO promoter has been shown to require the recruitment of chromatin-modifying and -remodeling enzymes. Despite this, relatively little is known about what changes to chromatin structure occur during the course of regulation at HO. Here, we used indirect end labeling in synchronized cultures to show that the chromatin structure is disrupted in a region that spans bp -600 to -1800 relative to the transcriptional start site. Across this region, there is a loss of canonical nucleosomes and a reduction in histone DNA cross-linking, as monitored by chromatin immunoprecipitation. The ATPase Snf2 is required for these alterations, but the histone acetyltransferase Gcn5 is not. This suggests that the SWI/SNF complex is directly involved in nucleosome removal at HO. We also present evidence indicating that the histone chaperone Asf1 assists in this. These observations suggest that SWI/SNF-related complexes in concert with histone chaperones act to remove histone octamers from DNA during the course of gene regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Regulação Fúngica da Expressão Gênica , Chaperonas Moleculares/genética , Mutação , Nucleossomos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
2.
Nature ; 434(7036): 987-94, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15846338

RESUMO

For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.


Assuntos
Segregação de Cromossomos , Cromossomos Fúngicos/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Transporte Biológico , Ciclo Celular , Cromossomos Fúngicos/ultraestrutura , Cinesinas/metabolismo , Cinetocoros/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/ultraestrutura , Proteína ran de Ligação ao GTP/metabolismo
3.
Nature ; 428(6978): 93-7, 2004 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-14961024

RESUMO

The movement of sister chromatids to opposite spindle poles during anaphase depends on the prior capture of sister kinetochores by microtubules with opposing orientations (amphitelic attachment or bi-orientation). In addition to proteins necessary for the kinetochore-microtubule attachment, bi-orientation requires the Ipl1 (Aurora B in animal cells) protein kinase and tethering of sister chromatids by cohesin. Syntelic attachments, in which sister kinetochores attach to microtubules with the same orientation, must be either 'avoided' or 'corrected'. Avoidance might be facilitated by the juxtaposition of sister kinetochores such that they face in opposite directions; kinetochore geometry is therefore deemed important. Error correction, by contrast, is thought to stem from the stabilization of kinetochore-spindle pole connections by tension in microtubules, kinetochores, or the surrounding chromatin arising from amphitelic but not syntelic attachment. The tension model predicts that any type of connection between two kinetochores suffices for efficient bi-orientation. Here we show that the two kinetochores of engineered, unreplicated dicentric chromosomes in Saccharomyces cerevisiae bi-orient efficiently, implying that sister kinetochore geometry is dispensable for bi-orientation. We also show that Ipl1 facilitates bi-orientation by promoting the turnover of kinetochore-spindle pole connections in a tension-dependent manner.


Assuntos
Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo , Anáfase , Aurora Quinases , Cromátides/metabolismo , Segregação de Cromossomos , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Microtúbulos/metabolismo , Mitose , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
J Cell Sci ; 116(Pt 12): 2551-64, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12734398

RESUMO

The importance of a dynamic actin cytoskeleton for facilitating endocytosis has been recognised for many years in budding yeast and is increasingly recognised in mammalian cells. However, the mechanism for actin recruitment and the role it plays in endocytosis is unclear. Here we show the importance of two yeast proteins in this process. We demonstrate that Sla1p and Sla2p interact in vitro and in vivo and that this interaction is mediated by the central domain of Sla2p, which includes its coiled-coil region, and by a domain of Sla1p between residues 118 and 361. Overexpression of the interacting fragment of Sla1p causes reduced fluid-phase endocytosis and, interestingly, defects in subsequent trafficking to vacuoles. We show that Sla2p is required for the polarised localisation of Sla1p in cells but not for its cortical localisation or for its overlapping localisation with actin. Generation of an Deltasla1Deltasla2 double mutant demonstrates that Sla2p is likely to act upstream of Sla1p in endocytosis, whereas sensitivity to latrunculin-A suggests that the proteins have opposite effects on actin dynamics. We propose that Sla2p recruits Sla1p to endocytic sites. Sla1p and its associated protein Pan1p then regulate actin assembly through interactions with Arp2/3 and Arp2/3-activating proteins Abp1p and Las17/Bee1p.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Proteína 2 Relacionada a Actina , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Proteínas Fúngicas/metabolismo , Substâncias Macromoleculares , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Mutação/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Tiazóis/farmacologia , Tiazolidinas , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Vacúolos/metabolismo , Proteína da Síndrome de Wiskott-Aldrich
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...