Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(26): 12003-12016, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38904106

RESUMO

Two self-healing-type supramolecular Ni(II)-metallogels are achieved. The choice of proper low-molecular-weight organic gelators such as trans-butenedioic acid (i.e., trans-BDA) and cis-butenedioic acid (i.e., cis-BDA) and triethylamine in N,N'-dimethylformamide solvent facilitates the metallogelation process. Through rheological investigations the mechanical robustness and viscoelastic properties of synthesized metallogels are explored. An in-depth exploration of thixotropic behavior also supports their self-healing features. Notably, distinct variations in morphologies of metallogels are also ascertained through field emission scanning electron microscopy studies. Furthermore, the existence of versatile noncovalent supramolecular interactions operating throughout the metallogel network is clearly revealed via Fourier transform infrared spectroscopy. Electrospray ionization-mass studies also explore the construction protocol of individual Ni(II)-metallogels. The Z-scan measurements with a 532 nm continuous wave laser were employed to unveil the nonlinear thermo-optical response of two synthesized self-healing metallogels, i.e., trans-BDA-TEA@Ni(II) and cis-BDA-TEA@Ni(II). Crucial parameters like the nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels are obtained. Metallogels show negative signs for the nonlinear refractive index and the nonlinear absorption coefficient. The real parts of the third-order susceptibility for these metallogels are much greater than the imaginary parts (i.e., χR(3) > χI(3)), making such metallogels very promising for all optical-switching applications.

2.
Dalton Trans ; 53(18): 7912-7921, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38639606

RESUMO

In this study, we report the synthetic method of two distinct supramolecular metallogels, namely Mn-BDA and Cd-BDA, using Mn(II) acetate tetrahydrate, Cd(II) acetate dihydrate and butane-1,4-dicarboxylic acid (BDA). DMF, a polar aprotic solvent, was immobilized in both metallogel-networks for their synthesis. The metallogelation of Mn-BDA was successfully attained through the instant mixing of a Mn(II)-source and BDA in DMF solvent media. By applying ultrasonication, a Cd-BDA metallogel was prepared. The stoichiometry of gel-forming components concerning metal salts and the LMWG are accountable to obtain respective stable metallogels. Rheological parameters such as storage modulus (G') and loss modulus (G'') explored the mechanical flexibility of the synthesized metallogels through amplitude and angular frequency sweep experiments. Both the metallogels possess significant mechanical stability, which was determined by monitoring diverse gel-to-sol transition shear strain values (γ%). Distinctive morphological visualizations of both of these metallogels (i.e., Mn-BDA and Cd-BDA) were made via field emission scanning electron microscopic (FESEM) studies, demonstrating a fibrous inter-connected network with a hierarchical self-assembled arrangement for Mn(II)-based metallogels and a typical stacked-flake-like association with hierarchical motifs for Cd(II)-based metallogels. EDAX elemental mapping substantiated the presence of metallogel-forming agents such as individual metal acetate salts, BDA acting as a low-molecular weight gelator, and gel-immobilized solvents such as DMF. Furthermore, Fourier transform infrared spectroscopy and ESI-mass spectroscopy were performed for both these supramolecular metallogels. FT-IR spectroscopic and ESI-mass spectroscopic results clearly substantiate the possible non-covalent supramolecular interactions among basic molecular repeating moieties, i.e., butane-1,4-dicarboxylic acid (the low-molecular weight gelator), individual metal salts and gel-immobilized polar aprotic solvent DMF for the construction of distinct stable supramolecular metallogel-systems. The semiconducting property of the fabricated metallogels was investigated. Two Schottky diodes (SDs) composed of ITO/Cd-BDA/Al and ITO/Mn-BDA/Al in a sandwich pattern with Al serving as the metal electrode were fabricated. Both these metallogel-based devices effectively offer significant semiconducting diode features with non-linear J-V characteristics. The non-ohmic conduction protocol of the fabricated metallogel-based devices was explored. Mn-BDA and Cd-BDA metallogel-based fabricated devices have rectification ratios of 6.67 and 23.50, respectively. The gel-based diode performances were examined by observing the voltage-dependent current density, charge transportation and rectification ratio.

3.
Langmuir ; 39(46): 16584-16595, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37934977

RESUMO

The generation of solvent-directed self-healing supramolecular Ni(II) metallogels of glutaric acid (i.e., Ni-Glu-DMF and Ni-Glu-DMSO) is described in this article. Polar aprotic solvents like N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are separately entrapped into the Ni(II)-acetate salt and glutaric acid-mediated networks to attain the semisolid flexible scaffolds. The gel nature of the fabricated materials is experimentally proven through different rheological tests such as amplitude sweep, frequency sweep, and thixotropic (time sweep) measurements. The self-repairing strategy and load-bearing features of the synthesized metallogel are studied in this work. The different supramolecular noncovalent interactions working within the soft scaffold are clearly explored. The formation strategy and the microstructural features of these synthesized metallogels are scrutinized through a Fourier transform infrared (FT-IR) spectroscopy study and field-emission scanning electron microscopy (FESEM) morphological analyses. The FT-IR spectroscopy observation displays a considerable amount of shifting of the infrared (IR) peaks of the xerogel samples of both the metallogels Ni-Glu-DMF and Ni-Glu-DMSO. The electrospray ionization (ESI)-mass spectroscopy result demonstrates the plausible construction of the metallogel network. In order to examine the nonlinear optical characteristics of the two synthesized self-healing metallogels Ni-Glu-DMSO and Ni-Glu-DMF, Z-scan measurements are carried out with a continuous wave (CW) diode-pumped solid-state (DPSS) laser at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels were evaluated by analyzing the experimental data from the Sheik-Bahae formalism. The nonlinear thermo-optical study reveals that these solvent-dependent metallogels show negative signs of nonlinear refractive index and nonlinear absorption coefficient. The figure of merit calculated for these compounds shows good agreement for their use in nonlinear photonic devices.

4.
ACS Omega ; 5(6): 2680-2689, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095691

RESUMO

A fascinating way to originate a mechanically stable metallogel of ferric ions with metal-coordinating organic ligand triethylenetetramine through direct mixing of their water solutions in a stoichiometric ratio is achieved under ambient conditions. The rheological study established the mechanical property of the Fe(III) metallogel. A cashew-shaped microstructure of the metallogel was observed by FESEM analysis. The electrical property of the Fe(III) metallogel was also carefully scrutinized. The semiconducting features like the Schottky barrier diode property of the Fe(III) metallogel were explored. The catalytic role of the Fe(III) metallogel was also critically explored. The Fe(III) metallogel shows an excellent catalytic property toward the synthesis of aryl thioethers via a C-S coupling reaction under mild reaction conditions without the use of any organic solvent.

5.
Dalton Trans ; 48(46): 17388-17394, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31742282

RESUMO

A novel mechanically stable supramolecular Co(ii)-metallohydrogel has been synthesized. Cobalt(ii) nitrate hexahydrate and monoethanolamine, as a low molecular weight organic gelator, are used to get the gel. The mechanical stability of the supramolecular hydrogel was analyzed. The morphology of the supramolecular metallohydrogel was scrutinized. The semiconducting features of the metallohydrogel were studied. The conducting properties of the Co(ii)-metallohydrogel establish a Schottky barrier diode type nature. The catalytic nature of the Co(ii)-metallohydrogel based room temperature single pot aryl-S coupling reaction was explored. Most interestingly, the Co(ii)-metallohydrogel based catalytic aryl-S coupling reaction does not require any column-chromatographic purification protocol to get pure aryl-thioethers. Thus, through this work a semiconducting Schottky barrier diode application and catalytic role in the room temperature single pot aryl-S coupling reaction of a supramolecular Co(ii)-metallohydrogel have been explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...