Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(25): 9630-9640, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38939134

RESUMO

Efficient, economically viable n-type organic semiconductor materials suitable for solution-processed OFET devices with high electron mobility and ambient stability are scarce. Merging these attributes into a single molecule remains a significant challenge and a careful molecular design is needed. To address this, synthetic viability (achievable in fewer than three steps) and using cost-effective starting materials are crucial. Our research presents a strategy that meets these criteria using naphthalene diimide (NDI) core structures. The approach involves a simple synthesis process with a cost of $ 5-10 per gram for the final products. This paper highlights our success in scaling up the production using affordable known reagents, creating ambient condition solution-processed OFET devices with impressive electron mobility, on-off current ratio (1 cm2 V-1 s-1 and I on/I off ∼ 109) and good ambient stability (more than 100 h). We conducted a comprehensive study on EHNDIBr2, a material that demonstrates superior performance due to its unique supramolecular arrangement in its brickwork stack. This was compared with two similar structures to validate our findings. The superior performance of EHNDIBr2 is attributed to the effective interlocking of charge-hopping units within the NDI core in its brickwork stack. Our findings include detailed electronic, spectroscopic, and microscopic analyses of these layers.

2.
Phys Rev Lett ; 131(12): 126302, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802962

RESUMO

Traditionally, the Coulomb repulsion or Peierls instability causes the metal-insulator phase transitions in strongly correlated quantum materials. In comparison, magnetic stress is predicted to drive the metal-insulator transition in materials exhibiting strong spin-lattice coupling. However, this mechanism lacks experimental validation and an in-depth understanding. Here we demonstrate the existence of the magnetic stress-driven metal-insulator transition in an archetypal material, chromium nitride. Structural, magnetic, electronic transport characterization, and first-principles modeling analysis show that the phase transition temperature in CrN is directly proportional to the strain-controlled anisotropic magnetic stress. The compressive strain increases the magnetic stress, leading to the much-coveted room-temperature transition. In contrast, tensile strain and the inclusion of nonmagnetic cations weaken the magnetic stress and reduce the transition temperature. This discovery of a new physical origin of metal-insulator phase transition that unifies spin, charge, and lattice degrees of freedom in correlated materials marks a new paradigm and could lead to novel device functionalities.

3.
ACS Nano ; 17(16): 16080-16088, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37523736

RESUMO

Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties have emerged as the best choice for single-photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons from single-photon emitters. Here, we show that the structural orientations and local compositional inhomogeneities within a single QD and the surrounding wet layer can be probed in a screening fashion by scanning X-ray diffraction microscopy and X-ray fluorescence with a few tens of nanometers-sized synchrotron radiation beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The obtained results show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale chirality and compositional anisotropy, contradictory to common assumptions, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures.

4.
J Phys Condens Matter ; 33(42)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34311451

RESUMO

We investigate the properties of excitons in the SiGe inverted quantum huts (IQHs) embedded in Si employing high-resolution x-ray photoemission spectroscopy. Ultra-small Si/Ge IQHs (13.3 nm × 6.6 nm) were grown on a Si buffer layer deposited on a Si (001) substrate using molecular beam epitaxy. We study the behavior of the excitons at different depths of the IQH structures by exposing the desired surfaces via controlled sputtering and annealing processes. The Si and Ge core level spectra show interesting properties at different surfaces; additionally, we discover distinct new features at the lower binding energy side of the Ge 3dpeak. The emergence of these features is attributed to the final state effects arising from core hole screening by the excitons. The properties of these features in the spectra collected at different locations of the IQHs are found significantly different from each other, indicating the local character of the excitons. These results provide a pathway to study the properties of excitons in such quantum structures. The evidence of the local character of the excitons suggests a type I behavior of the system, which is important for the devices for optoelectronic applications, quantum communications, etc.

5.
Langmuir ; 36(50): 15270-15282, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33296208

RESUMO

The influence of adding nanoparticles on the ascast morphology of spin coated immiscible polystyrene/poly(methyl methacrylate) (PS/PMMA) thin films of different thickness (hE) and composition (RB, volume ratio of PS to PMMA) has been explored in this article. To understand the precise effect of nanoparticle addition, the morphology of PS/PMMA thin blend films spin cast from toluene on a native oxide covered silicon wafer substrate was first investigated. It is seen that in particle free films, the generic morphology of the films remains nearly unaltered with increase in hE, for RB = 3:1 and 1:3. In contrast, strong hE dependent morphology transformation is observed in films with RB = 1:1. Subsequently, thiol-capped gold nanoparticles (AuNP) containing films with different particle concentrations (CNP) were cast from the same solvent along with the polymer mixture. We observe that addition of AuNPs barely alters the generic morphology of the films with RB = 3:1. In contrast, the presence of the particles significantly influences the morphology of the films with RB = 1:1 and 1:3, particularly at higher CNP (≈10.0%). X-ray photoelectron spectroscopy and X-ray reflectivity of some samples reveal that the AuNPs tend to migrate to the free surface through the PS phase, thereby stabilizing this layer partially or fully (depending on CNP) against dewetting over a surface of adsorbed PMMA layer and influencing the ascast morphology as a function of CNP. The work is fundamentally important in understanding largely overlooked implications of nanoparticle addition on the morphology of PS/PMMA blend thin films which forms the fundamental basis for future interesting studies involving dynamics of nanoparticles within the blend thin films.

6.
Nanoscale ; 12(40): 20840-20848, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33043328

RESUMO

Anion exchange of CsPbX3 nanocrystals (NCs) is an easy pathway to tune the bandgap over the entire visible region. Even the mixing of pre-synthesized CsPbBr3 and CsPbI3 NCs at room temperature leads to the formation of mixed halide CsPbBr3-xIx NCs. Understanding the reaction mechanism and the kinetics of interparticle mixing is essential for fundamental aspects and device applications. Here, we probed the kinetics of ion migration through time-dependent steady-state photoluminescence (PL) spectroscopy. We found three primary PL peaks after the mixing of NCs-bromide side peak, iodide side peak, and a new peak that emerges during the reaction. The reaction follows first-order kinetics and the activation energy is 0.75 ± 0.05 eV. We propose that the free oleylammonium halides which are in dynamic equilibrium with the NCs, eventually promote interparticle mixing that follows the anion migration from the surface to the core of the nanocrystal, which is the rate-limiting step. Overall, the inherent reaction rate between the halide anions and the nanocrystals governs the reaction kinetics.

7.
J Synchrotron Radiat ; 27(Pt 5): 1200-1208, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876594

RESUMO

Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.

8.
Nanotechnology ; 30(38): 385706, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31174200

RESUMO

The interface of two dissimilar materials is well known for surprises in condensed matter, and provides avenues for rich physics as well as seeds for future technological advancements. We present some exciting magnetization (M) and remanence (µ) results, which conclusively arise at the interface of two highly functional materials, namely the graphitic shells of a carbon nanotube (CNT) and α-Fe2O3, a Dzyaloshinskii-Moriya interaction driven weak ferromagnet (WFM) and piezomagnet (PzM). We show that the encapsulation inside a CNT leads to a significant enhancement in M and correspondingly in µ, a time-stable part of the remanence, exclusive to the WFM phase. Up to 70% of in-field magnetization is retained in the form of µ at room temperature. The lattice parameter of the CNT around the Morin transition of the encapsulate exhibits a clear anomaly, confirming the novel interface effects. Control experiments on bare α-Fe2O3 nanowires bring into the fore that the weak ferromagnets such as α-Fe2O3 are not as weak, as far as their remanence and its stability with time is concerned, and encapsulation inside a CNT leads to a substantial enhancement in these functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...